These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38112961)
1. Validation of spectrophotometric and colorimetric methods to quantify clindamycin in skin tissue: application to in vitro release and ex vivo dermatokinetic studies from separable effervescent microarray patch loaded bacterially sensitive microparticle. Rahmadani IN; Fauziah N; Hidayat MN; Safirah NA; Fadhilah NA; Permana AD Anal Sci; 2024 Mar; 40(3):445-460. PubMed ID: 38112961 [TBL] [Abstract][Full Text] [Related]
2. Selective Delivery of Clindamycin Using a Combination of Bacterially Sensitive Microparticle and Separable Effervescent Microarray Patch on Bacteria Causing Diabetic Foot Infection. Fauziah N; Safirah NA; Rahmadani IN; Hidayat MN; Fadhilah NA; Djide NJN; Permana AD Pharm Res; 2024 May; 41(5):967-982. PubMed ID: 38637438 [TBL] [Abstract][Full Text] [Related]
3. Validation of spectrophotometric method to quantify chloramphenicol in fluid and rat skin tissue mimicking infection environment: Application to in vitro release and ex vivo dermatokinetic studies from dissolving microneedle loaded microparticle sensitive bacteria. Mudjahid M; Sulistiawati ; Meidianto Asri R; Nainu F; Dian Permana A Spectrochim Acta A Mol Biomol Spectrosc; 2023 Apr; 291():122374. PubMed ID: 36682254 [TBL] [Abstract][Full Text] [Related]
4. Validation of UV-Vis spectrophotometric and colorimetric methods to quantify methotrexate in plasma and rat skin tissue: Application to in vitro release, ex vivo and in vivo studies from dissolving microarray patch loaded pH-sensitive nanoparticle. Febrianti NQ; Tunggeng MGR; Ramadhany ID; Asri RM; Djabir YY; Permana AD Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jul; 315():124258. PubMed ID: 38599025 [TBL] [Abstract][Full Text] [Related]
5. Bacteria-Targeted Clindamycin Loaded Polymeric Nanoparticles: Effect of Surface Charge on Nanoparticle Adhesion to MRSA, Antibacterial Activity, and Wound Healing. Hasan N; Cao J; Lee J; Hlaing SP; Oshi MA; Naeem M; Ki MH; Lee BL; Jung Y; Yoo JW Pharmaceutics; 2019 May; 11(5):. PubMed ID: 31096709 [TBL] [Abstract][Full Text] [Related]
6. Community-associated methicillin-resistant Staphylococcus aureus infection of diabetic foot ulcers in an eastern diabetic foot center in a tertiary hospital in China: a retrospective study. Chen Y; Yang J; Wang Y; You J; Zhu W; Liu C; Luan Y; Li L; Li H BMC Infect Dis; 2023 Oct; 23(1):652. PubMed ID: 37789270 [TBL] [Abstract][Full Text] [Related]
7. Silver nanoparticles as a bioadjuvant of antibiotics against biofilm-mediated infections with methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in chronic rhinosinusitis patients. Feizi S; Cooksley CM; Nepal R; Psaltis AJ; Wormald PJ; Vreugde S Pathology; 2022 Jun; 54(4):453-459. PubMed ID: 34844745 [TBL] [Abstract][Full Text] [Related]
8. Selective delivery of silver nanoparticles for improved treatment of biofilm skin infection using bacteria-responsive microparticles loaded into dissolving microneedles. Permana AD; Anjani QK; Sartini ; Utomo E; Volpe-Zanutto F; Paredes AJ; Evary YM; Mardikasari SA; Pratama MR; Tuany IN; Donnelly RF Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111786. PubMed ID: 33545912 [TBL] [Abstract][Full Text] [Related]
9. Silver nanoparticles (AgNPs) in the control of Staphylococcus spp. da Cunha KF; Albernaz DTF; Garcia MO; Allend SO; Hartwig DD Lett Appl Microbiol; 2023 Jan; 76(1):. PubMed ID: 36688766 [TBL] [Abstract][Full Text] [Related]
10. [Analysis of distribution and drug resistance of pathogens isolated from 159 patients with catheter-related bloodstream infection in burn intensive care unit]. Luo XQ; Gong YL; Zhang C; Liu MX; Shi YL; Peng YZ; Li N Zhonghua Shao Shang Za Zhi; 2020 Jan; 36(1):24-31. PubMed ID: 32023714 [No Abstract] [Full Text] [Related]
11. Oligodynamic Boons of Daptomycin and Noble Metal Nanoparticles Packaged in an Anti-MRSA Topical Gel Formulation. Chakravarty I; Kundu S Curr Pharm Biotechnol; 2019; 20(9):707-718. PubMed ID: 31223082 [TBL] [Abstract][Full Text] [Related]
12. Assessment of the Antibacterial Potential of Biosynthesized Silver Nanoparticles Combined with Vancomycin Against Methicillin-Resistant Staphylococcus aureus-Induced Infection in Rats. Awad M; Yosri M; Abdel-Aziz MM; Younis AM; Sidkey NM Biol Trace Elem Res; 2021 Nov; 199(11):4225-4236. PubMed ID: 33389618 [TBL] [Abstract][Full Text] [Related]
13. [Analysis of the pathogenic characteristics of 162 severely burned patients with bloodstream infection]. Gong YL; Yang ZC; Yin SP; Liu MX; Zhang C; Luo XQ; Peng YZ Zhonghua Shao Shang Za Zhi; 2016 Sep; 32(9):529-35. PubMed ID: 27647068 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles. Mohammed HA; Amin MA; Zayed G; Hassan Y; El-Mokhtar M; Saddik MS J Antibiot (Tokyo); 2023 May; 76(5):291-300. PubMed ID: 36854977 [TBL] [Abstract][Full Text] [Related]
15. Enhancement in Site-Specific Delivery of Chloramphenicol Using Bacterially Sensitive Microparticle Loaded Into Dissolving Microneedle: Potential For Enhanced Effectiveness Treatment of Cellulitis. Mudjahid M; Nainu F; Utami RN; Sam A; Marzaman ANF; Roska TP; Asri RM; Himawan A; Donnelly RF; Permana AD ACS Appl Mater Interfaces; 2022 Dec; 14(51):56560-56577. PubMed ID: 36516276 [TBL] [Abstract][Full Text] [Related]
16. In Vivo and In Vitro Assessments of the Antibacterial Potential of Chitosan-Silver Nanocomposite Against Methicillin-Resistant Staphylococcus aureus-Induced Infection in Rats. Hassanen EI; Ragab E Biol Trace Elem Res; 2021 Jan; 199(1):244-257. PubMed ID: 32306284 [TBL] [Abstract][Full Text] [Related]
17. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Akram FE; El-Tayeb T; Abou-Aisha K; El-Azizi M Ann Clin Microbiol Antimicrob; 2016 Aug; 15(1):48. PubMed ID: 27530257 [TBL] [Abstract][Full Text] [Related]
18. Activation of clindamycin phosphate by human skin. Amr S; Brown MB; Martin GP; Forbes B J Appl Microbiol; 2001 Apr; 90(4):550-4. PubMed ID: 11309066 [TBL] [Abstract][Full Text] [Related]
19. Sub-Inhibitory Concentrations of Oxacillin, but Not Clindamycin, Linezolid, or Tigecycline, Decrease Staphylococcal Phenol-Soluble Modulin Expression in Community-Acquired Methicillin-Resistant Staphylococcus aureus. Hodille E; Beraud L; Périan S; Berti V; Bes M; Tristan A; Blond E; Lina G; Dumitrescu O Microbiol Spectr; 2022 Feb; 10(1):e0080821. PubMed ID: 35044221 [TBL] [Abstract][Full Text] [Related]
20. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. Adhikari RP; Shrestha S; Barakoti A; Amatya R BMC Infect Dis; 2017 Jul; 17(1):483. PubMed ID: 28693489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]