BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 38113030)

  • 21. The Orphan Immune Receptor LILRB3 Modulates Fc Receptor-Mediated Functions of Neutrophils.
    Zhao Y; van Woudenbergh E; Zhu J; Heck AJR; van Kessel KPM; de Haas CJC; Aerts PC; van Strijp JAG; McCarthy AJ
    J Immunol; 2020 Feb; 204(4):954-966. PubMed ID: 31915259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors.
    Zhang M; Wang L; Liu W; Wang T; De Sanctis F; Zhu L; Zhang G; Cheng J; Cao Q; Zhou J; Tagliabue A; Bronte V; Yan D; Wan X; Yu G
    J Immunol Res; 2022; 2022():2253436. PubMed ID: 35785030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paired immunoglobin-like receptor-B regulates the suppressive function and fate of myeloid-derived suppressor cells.
    Ma G; Pan PY; Eisenstein S; Divino CM; Lowell CA; Takai T; Chen SH
    Immunity; 2011 Mar; 34(3):385-95. PubMed ID: 21376641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myeloid-derived suppressor cells: an emerging target for anticancer immunotherapy.
    Wu Y; Yi M; Niu M; Mei Q; Wu K
    Mol Cancer; 2022 Sep; 21(1):184. PubMed ID: 36163047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment.
    Steggerda SM; Bennett MK; Chen J; Emberley E; Huang T; Janes JR; Li W; MacKinnon AL; Makkouk A; Marguier G; Murray PJ; Neou S; Pan A; Parlati F; Rodriguez MLM; Van de Velde LA; Wang T; Works M; Zhang J; Zhang W; Gross MI
    J Immunother Cancer; 2017 Dec; 5(1):101. PubMed ID: 29254508
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delicaflavone reactivates anti-tumor immune responses by abrogating monocytic myeloid cell-mediated immunosuppression.
    Li L; You W; Wang X; Zou Y; Yao H; Lan H; Lin X; Zhang Q; Chen B
    Phytomedicine; 2023 Jan; 108():154508. PubMed ID: 36332384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulating Histone Deacetylase Signaling Pathways of Myeloid-Derived Suppressor Cells Enhanced T Cell-Based Immunotherapy.
    Adeshakin AO; Adeshakin FO; Yan D; Wan X
    Front Immunol; 2022; 13():781660. PubMed ID: 35140716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells.
    Singh L; Muise ES; Bhattacharya A; Grein J; Javaid S; Stivers P; Zhang J; Qu Y; Joyce-Shaikh B; Loboda A; Zhang C; Meehl M; Chiang DY; Ranganath SH; Rosenzweig M; Brandish PE
    Mol Cancer Res; 2021 Apr; 19(4):702-716. PubMed ID: 33372059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myeloid-derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers.
    Feng S; Cheng X; Zhang L; Lu X; Chaudhary S; Teng R; Frederickson C; Champion MM; Zhao R; Cheng L; Gong Y; Deng H; Lu X
    Proc Natl Acad Sci U S A; 2018 Oct; 115(40):10094-10099. PubMed ID: 30232256
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct frequency patterns of LILRB3 and LILRA6 allelic variants in Europeans.
    Bashirova AA; Kasprzak W; O'hUigin C; Carrington M
    Immunogenetics; 2023 Jun; 75(3):263-267. PubMed ID: 36449053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reprogramming immunosuppressive myeloid cells facilitates immunotherapy for colorectal cancer.
    Lu W; Yu W; He J; Liu W; Yang J; Lin X; Zhang Y; Wang X; Jiang W; Luo J; Zhang Q; Yang H; Peng S; Yi Z; Ren S; Chen J; Siwko S; Nussinov R; Cheng F; Zhang H; Liu M
    EMBO Mol Med; 2021 Jan; 13(1):e12798. PubMed ID: 33283987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Netrin-1 Promotes the Immunosuppressive Activity of MDSCs in Colorectal Cancer.
    Xia X; Mao Z; Wang W; Ma J; Tian J; Wang S; Yin K
    Cancer Immunol Res; 2023 May; 11(5):600-613. PubMed ID: 36812256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunoglobulin-like transcript 3 is expressed by myeloid-derived suppressor cells and correlates with survival in patients with non-small cell lung cancer.
    de Goeje PL; Bezemer K; Heuvers ME; Dingemans AC; Groen HJ; Smit EF; Hoogsteden HC; Hendriks RW; Aerts JG; Hegmans JP
    Oncoimmunology; 2015 Jul; 4(7):e1014242. PubMed ID: 26140237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. T lymphocytes induce human cancer cells derived from solid malignant tumors to secrete galectin-9 which facilitates immunosuppression in cooperation with other immune checkpoint proteins.
    Schlichtner S; Yasinska IM; Lall GS; Berger SM; Ruggiero S; Cholewa D; Aliu N; Gibbs BF; Fasler-Kan E; Sumbayev VV
    J Immunother Cancer; 2023 Jan; 11(1):. PubMed ID: 36599470
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Valproic acid attenuates CCR2-dependent tumor infiltration of monocytic myeloid-derived suppressor cells, limiting tumor progression.
    Xie Z; Ikegami T; Ago Y; Okada N; Tachibana M
    Oncoimmunology; 2020; 9(1):1734268. PubMed ID: 32158627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myeloid cells as a target for oligonucleotide therapeutics: turning obstacles into opportunities.
    Kortylewski M; Moreira D
    Cancer Immunol Immunother; 2017 Aug; 66(8):979-988. PubMed ID: 28214929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reprogramming immunosuppressive myeloid cells by activated T cells promotes the response to anti-PD-1 therapy in colorectal cancer.
    Chen J; Sun HW; Yang YY; Chen HT; Yu XJ; Wu WC; Xu YT; Jin LL; Wu XJ; Xu J; Zheng L
    Signal Transduct Target Ther; 2021 Jan; 6(1):4. PubMed ID: 33414378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immune checkpoint blockade therapy mitigates systemic inflammation and affects cellular FLIP-expressing monocytic myeloid-derived suppressor cells in non-progressor non-small cell lung cancer patients.
    Adamo A; Frusteri C; Pilotto S; Caligola S; Belluomini L; Poffe O; Giacobazzi L; Dusi S; Musiu C; Hu Y; Wang T; Rizzini D; Vella A; Canè S; Sartori G; Insolda J; Sposito M; Incani UC; Carbone C; Piro G; Pettinella F; Qi F; Wang D; Sartoris S; De Sanctis F; Scapini P; Dusi S; Cassatella MA; Bria E; Milella M; Bronte V; Ugel S
    Oncoimmunology; 2023; 12(1):2253644. PubMed ID: 37720688
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting depletion of myeloid-derived suppressor cells potentiates PD-L1 blockade efficacy in gastric and colon cancers.
    Tang Y; Zhou C; Li Q; Cheng X; Huang T; Li F; He L; Zhang B; Tu S
    Oncoimmunology; 2022; 11(1):2131084. PubMed ID: 36268178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modified method for differentiation of myeloid-derived suppressor cells
    Zhou H; Xie Z; Morikawa N; Sakurai F; Mizuguchi H; Okuzaki D; Okada N; Tachibana M
    Biochem Biophys Rep; 2023 Mar; 33():101416. PubMed ID: 36605123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.