BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 38113030)

  • 41. Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy.
    Sun L; Clavijo PE; Robbins Y; Patel P; Friedman J; Greene S; Das R; Silvin C; Van Waes C; Horn LA; Schlom J; Palena C; Maeda D; Zebala J; Allen CT
    JCI Insight; 2019 Apr; 4(7):. PubMed ID: 30944253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model.
    Meyer C; Sevko A; Ramacher M; Bazhin AV; Falk CS; Osen W; Borrello I; Kato M; Schadendorf D; Baniyash M; Umansky V
    Proc Natl Acad Sci U S A; 2011 Oct; 108(41):17111-6. PubMed ID: 21969559
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Immune-Checkpoint Protein VISTA Regulates Antitumor Immunity by Controlling Myeloid Cell-Mediated Inflammation and Immunosuppression.
    Xu W; Dong J; Zheng Y; Zhou J; Yuan Y; Ta HM; Miller HE; Olson M; Rajasekaran K; Ernstoff MS; Wang D; Malarkannan S; Wang L
    Cancer Immunol Res; 2019 Sep; 7(9):1497-1510. PubMed ID: 31340983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immature myeloid cells in the tumor microenvironment: Implications for immunotherapy.
    Kamran N; Chandran M; Lowenstein PR; Castro MG
    Clin Immunol; 2018 Apr; 189():34-42. PubMed ID: 27777083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Blocking LAIR1 signaling in immune cells inhibits tumor development.
    Xie J; Gui X; Deng M; Chen H; Chen Y; Liu X; Ku Z; Tan L; Huang R; He Y; Zhang B; Lewis C; Chen K; Xu L; Xu J; Huang T; Liao XC; Zhang N; An Z; Zhang CC
    Front Immunol; 2022; 13():996026. PubMed ID: 36211388
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the hybrid gene
    Hirayasu K; Khor SS; Kawai Y; Shimada M; Omae Y; Hasegawa G; Hashikawa Y; Tanimoto H; Ohashi J; Hosomichi K; Tajima A; Nakamura H; Nakamura M; Tokunaga K; Hanayama R; Nagasaki M
    Front Immunol; 2024; 15():1398935. PubMed ID: 38807600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Blockade of myeloid-derived suppressor cell function by valproic acid enhanced anti-PD-L1 tumor immunotherapy.
    Adeshakin AO; Yan D; Zhang M; Wang L; Adeshakin FO; Liu W; Wan X
    Biochem Biophys Res Commun; 2020 Feb; 522(3):604-611. PubMed ID: 31785814
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer.
    Nalawade SA; Shafer P; Bajgain P; McKenna MK; Ali A; Kelly L; Joubert J; Gottschalk S; Watanabe N; Leen A; Parihar R; Vera Valdes JF; Hoyos V
    J Immunother Cancer; 2021 Nov; 9(11):. PubMed ID: 34815355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myeloid derived suppressor cells and innate immune system interaction in tumor microenvironment.
    Pramanik A; Bhattacharyya S
    Life Sci; 2022 Sep; 305():120755. PubMed ID: 35780842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LIGHT (TNFSF14) Costimulation Enhances Myeloid Cell Activation and Antitumor Immunity in the Setting of PD-1/PD-L1 and TIGIT Checkpoint Blockade.
    Yoo KJ; Johannes K; González LE; Patel A; Shuptrine CW; Opheim Z; Lenz K; Campbell K; Nguyen TA; Miriyala J; Smith C; McGuire A; Tsai YH; Rangwala F; de Silva S; Schreiber TH; Fromm G
    J Immunol; 2022 Aug; 209(3):510-525. PubMed ID: 35817517
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel role of microphthalmia-associated transcription factor in modulating the differentiation and immunosuppressive functions of myeloid-derived suppressor cells.
    Lee A; Park H; Lim S; Lim J; Koh J; Jeon YK; Yang Y; Lee MS; Lim JS
    J Immunother Cancer; 2023 Jan; 11(1):. PubMed ID: 36627143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression.
    Groth C; Hu X; Weber R; Fleming V; Altevogt P; Utikal J; Umansky V
    Br J Cancer; 2019 Jan; 120(1):16-25. PubMed ID: 30413826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment.
    Su X; Xu Y; Fox GC; Xiang J; Kwakwa KA; Davis JL; Belle JI; Lee WC; Wong WH; Fontana F; Hernandez-Aya LF; Kobayashi T; Tomasson HM; Su J; Bakewell SJ; Stewart SA; Egbulefu C; Karmakar P; Meyer MA; Veis DJ; DeNardo DG; Lanza GM; Achilefu S; Weilbaecher KN
    J Clin Invest; 2021 Oct; 131(20):. PubMed ID: 34520398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeting myeloid cells in the tumor microenvironment enhances vaccine efficacy in murine epithelial ovarian cancer.
    Khan AN; Kolomeyevskaya N; Singel KL; Grimm MJ; Moysich KB; Daudi S; Grzankowski KS; Lele S; Ylagan L; Webster GA; Abrams SI; Odunsi K; Segal BH
    Oncotarget; 2015 May; 6(13):11310-26. PubMed ID: 25888637
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Allele-specific recognition by LILRB3 and LILRA6 of a cytokeratin 8-associated ligand on necrotic glandular epithelial cells.
    Jones DC; Hewitt CR; López-Álvarez MR; Jahnke M; Russell AI; Radjabova V; Trowsdale AR; Trowsdale J
    Oncotarget; 2016 Mar; 7(13):15618-31. PubMed ID: 26769854
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypoxia-Induced VISTA Promotes the Suppressive Function of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
    Deng J; Li J; Sarde A; Lines JL; Lee YC; Qian DC; Pechenick DA; Manivanh R; Le Mercier I; Lowrey CH; Varn FS; Cheng C; Leib DA; Noelle RJ; Mabaera R
    Cancer Immunol Res; 2019 Jul; 7(7):1079-1090. PubMed ID: 31088847
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MDSCs and T cells in solid tumors and non-Hodgkin lymphomas: an immunosuppressive speech.
    Cioccarelli C; Molon B
    Clin Exp Immunol; 2022 Jun; 208(2):147-157. PubMed ID: 35348617
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting Myeloid-Derived Suppressor Cells to Enhance the Antitumor Efficacy of Immune Checkpoint Blockade Therapy.
    Li X; Zhong J; Deng X; Guo X; Lu Y; Lin J; Huang X; Wang C
    Front Immunol; 2021; 12():754196. PubMed ID: 35003065
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/αCD40 therapy.
    Weiss JM; Subleski JJ; Back T; Chen X; Watkins SK; Yagita H; Sayers TJ; Murphy WJ; Wiltrout RH
    J Immunol; 2014 Jun; 192(12):5821-9. PubMed ID: 24808361
    [TBL] [Abstract][Full Text] [Related]  

  • 60. T lymphocytes induce human cancer cells derived from solid malignant tumors to secrete galectin-9 which facilitates immunosuppression in cooperation with other immune checkpoint proteins.
    Schlichtner S; Yasinska IM; Lall GS; Berger SM; Ruggiero S; Cholewa D; Aliu N; Gibbs BF; Fasler-Kan E; Sumbayev VV
    J Immunother Cancer; 2023 Jan; 11(1):. PubMed ID: 36599470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.