These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 38113075)
41. Structural and Atropisomeric Factors Governing the Selectivity of Pyrimido-benzodiazipinones as Inhibitors of Kinases and Bromodomains. Wang J; Erazo T; Ferguson FM; Buckley DL; Gomez N; Muñoz-Guardiola P; Diéguez-Martínez N; Deng X; Hao M; Massefski W; Fedorov O; Offei-Addo NK; Park PM; Dai L; DiBona A; Becht K; Kim ND; McKeown MR; Roberts JM; Zhang J; Sim T; Alessi DR; Bradner JE; Lizcano JM; Blacklow SC; Qi J; Xu X; Gray NS ACS Chem Biol; 2018 Sep; 13(9):2438-2448. PubMed ID: 30102854 [TBL] [Abstract][Full Text] [Related]
42. System-based drug discovery within the human kinome. Bamborough P Expert Opin Drug Discov; 2012 Nov; 7(11):1053-70. PubMed ID: 22971083 [TBL] [Abstract][Full Text] [Related]
43. Kinase inhibitor data set for systematic analysis of representative kinases across the human kinome. Laufkötter O; Laufer S; Bajorath J Data Brief; 2020 Oct; 32():106189. PubMed ID: 32904416 [TBL] [Abstract][Full Text] [Related]
44. Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors. Berishvili VP; Voronkov AE; Radchenko EV; Palyulin VA Mol Inform; 2018 Nov; 37(11):e1800030. PubMed ID: 29901257 [TBL] [Abstract][Full Text] [Related]
45. Exploring Polypharmacology in Drug Discovery and Repurposing Using the CANDO Platform. Chopra G; Samudrala R Curr Pharm Des; 2016; 22(21):3109-23. PubMed ID: 27013226 [TBL] [Abstract][Full Text] [Related]
46. Polypharmacology in Drug Discovery: A Review from Systems Pharmacology Perspective. Zhang W; Bai Y; Wang Y; Xiao W Curr Pharm Des; 2016; 22(21):3171-81. PubMed ID: 26907941 [TBL] [Abstract][Full Text] [Related]
47. Looking Under the Lamppost: The Search for New Cancer Targets in the Human Kinome. Sueca-Comes M; Rusu EC; Grabowska AM; Bates DO Pharmacol Rev; 2022 Oct; 74(4):1136-1145. PubMed ID: 36180110 [TBL] [Abstract][Full Text] [Related]
48. Recent Advances in Dual BRD4-Kinase Inhibitors Based on Polypharmacology. Chen L; Liu ZP; Li X ChemMedChem; 2022 Mar; 17(6):e202100731. PubMed ID: 35146935 [TBL] [Abstract][Full Text] [Related]
49. A targeted quantitative proteomics strategy for global kinome profiling of cancer cells and tissues. Xiao Y; Guo L; Wang Y Mol Cell Proteomics; 2014 Apr; 13(4):1065-75. PubMed ID: 24520089 [TBL] [Abstract][Full Text] [Related]
50. Polypharmacology of Approved Anticancer Drugs. Amelio I; Lisitsa A; Knight RA; Melino G; Antonov AV Curr Drug Targets; 2017; 18(5):534-543. PubMed ID: 26926468 [TBL] [Abstract][Full Text] [Related]
51. Structural insights into the polypharmacological activity of quercetin on serine/threonine kinases. Baby B; Antony P; Al Halabi W; Al Homedi Z; Vijayan R Drug Des Devel Ther; 2016; 10():3109-3123. PubMed ID: 27729770 [TBL] [Abstract][Full Text] [Related]
52. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Dar AC; Das TK; Shokat KM; Cagan RL Nature; 2012 Jun; 486(7401):80-4. PubMed ID: 22678283 [TBL] [Abstract][Full Text] [Related]
53. Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies. Ravikumar B; Timonen S; Alam Z; Parri E; Wennerberg K; Aittokallio T Cell Chem Biol; 2019 Nov; 26(11):1608-1622.e6. PubMed ID: 31521622 [TBL] [Abstract][Full Text] [Related]
54. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Logie E; Novo CP; Driesen A; Van Vlierberghe P; Vanden Berghe W Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884535 [TBL] [Abstract][Full Text] [Related]
55. Using Bioluminescent Kinase Profiling Strips to Identify Kinase Inhibitor Selectivity and Promiscuity. Zegzouti H; Hennek J; Goueli SA Methods Mol Biol; 2016; 1360():59-73. PubMed ID: 26501902 [TBL] [Abstract][Full Text] [Related]
56. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Jacoby E; Tresadern G; Bembenek S; Wroblowski B; Buyck C; Neefs JM; Rassokhin D; Poncelet A; Hunt J; van Vlijmen H Drug Discov Today; 2015 Jun; 20(6):652-8. PubMed ID: 25596550 [TBL] [Abstract][Full Text] [Related]
57. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Meijer L; Borgne A; Mulner O; Chong JP; Blow JJ; Inagaki N; Inagaki M; Delcros JG; Moulinoux JP Eur J Biochem; 1997 Jan; 243(1-2):527-36. PubMed ID: 9030781 [TBL] [Abstract][Full Text] [Related]
58. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. Bamborough P; Drewry D; Harper G; Smith GK; Schneider K J Med Chem; 2008 Dec; 51(24):7898-914. PubMed ID: 19035792 [TBL] [Abstract][Full Text] [Related]
59. A multitargeted probe-based strategy to identify signaling vulnerabilities in cancers. Rao S; Du G; Hafner M; Subramanian K; Sorger PK; Gray NS J Biol Chem; 2019 May; 294(21):8664-8673. PubMed ID: 30858179 [TBL] [Abstract][Full Text] [Related]
60. Large-scale comparison of machine learning methods for profiling prediction of kinase inhibitors. Wu J; Chen Y; Wu J; Zhao D; Huang J; Lin M; Wang L J Cheminform; 2024 Jan; 16(1):13. PubMed ID: 38291477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]