These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 38113190)
1. Detection and Elimination of Senescent Cells with a Self-Assembled Senescence-Associated β-Galactosidase-Activatable Nanophotosensitizer. Chu JCH; Xiong J; Wong CTT; Wang S; Tam DY; García-Fernández A; Martínez-Máñez R; Ng DKP J Med Chem; 2024 Jan; 67(1):234-244. PubMed ID: 38113190 [TBL] [Abstract][Full Text] [Related]
2. β-Galactosidase-Triggered Photodynamic Elimination of Senescent Cells with a Boron Dipyrromethene-Based Photosensitizer. Chu JCH; Escriche-Navarro B; Xiong J; García-Fernández A; Martínez-Máñez R; Ng DKP Adv Sci (Weinh); 2024 Aug; 11(31):e2401012. PubMed ID: 38884205 [TBL] [Abstract][Full Text] [Related]
3. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy. Wong RCH; Chow SYS; Zhao S; Fong WP; Ng DKP; Lo PC ACS Appl Mater Interfaces; 2017 Jul; 9(28):23487-23496. PubMed ID: 28661122 [TBL] [Abstract][Full Text] [Related]
4. Cellular senescence imaging and senolysis monitoring in cancer therapy based on a β-galactosidase-activated aggregation-induced emission luminogen. Cen P; Cui C; Huang J; Chen H; Wu F; Niu J; Zhong Y; Jin C; Zhu WH; Zhang H; Tian M Acta Biomater; 2024 Apr; 179():340-353. PubMed ID: 38556136 [TBL] [Abstract][Full Text] [Related]
5. A cell-selective glutathione-responsive tris(phthalocyanine) as a smart photosensitiser for targeted photodynamic therapy. Chow SYS; Zhao S; Lo PC; Ng DKP Dalton Trans; 2017 Aug; 46(34):11223-11229. PubMed ID: 28795744 [TBL] [Abstract][Full Text] [Related]
6. An Activatable NIR Probe for the Detection and Elimination of Senescent Cells. Yang L; Liu G; Chen Q; Wan Y; Liu Z; Zhang J; Huang C; Xu Z; Li S; Lee CS; Zhang L; Sun H Anal Chem; 2022 Apr; 94(13):5425-5431. PubMed ID: 35319866 [TBL] [Abstract][Full Text] [Related]
7. Selective photodynamic eradication of senescent cells with a β-galactosidase-activated photosensitiser. Xiong J; Cheung YK; Fong WP; Wong CTT; Ng DKP Chem Commun (Camb); 2023 Mar; 59(23):3471-3474. PubMed ID: 36877479 [TBL] [Abstract][Full Text] [Related]
8. Disulfide-Linked Dendritic Oligomeric Phthalocyanines as Glutathione-Responsive Photosensitizers for Photodynamic Therapy. Chow SYS; Wong RCH; Zhao S; Lo PC; Ng DKP Chemistry; 2018 Apr; 24(22):5779-5789. PubMed ID: 29356199 [TBL] [Abstract][Full Text] [Related]
9. An acid-cleavable phthalocyanine tetramer as an activatable photosensitiser for photodynamic therapy. Chow SY; Lo PC; Ng DK Dalton Trans; 2016 Aug; 45(33):13021-4. PubMed ID: 27396392 [TBL] [Abstract][Full Text] [Related]
11. Development of highly sensitive fluorescent probes for the detection of β-galactosidase activity - application to the real-time monitoring of senescence in live cells. Safir Filho M; Dao P; Gesson M; Martin AR; Benhida R Analyst; 2018 May; 143(11):2680-2688. PubMed ID: 29774897 [TBL] [Abstract][Full Text] [Related]
12. Far-red Fluorescent Senescence-associated β-Galactosidase Probe for Identification and Enrichment of Senescent Tumor Cells by Flow Cytometry. Flor A; Pagacz J; Thompson D; Kron S J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190263 [TBL] [Abstract][Full Text] [Related]
13. A water-soluble probe with p-hydroxybenzyl quaternary ammonium linker for selective imaging in senescent cells. Zhen Z; Zhu S; Jin J; Wang L; Lu W Anal Chim Acta; 2020 Oct; 1133():99-108. PubMed ID: 32993878 [TBL] [Abstract][Full Text] [Related]
14. A phthalocyanine-based self-assembled nanophotosensitizer for efficient in vivo photodynamic anticancer therapy. Lin AL; Chen JH; Hong JW; Zhao YY; Zheng BY; Ke MR; Huang JD J Inorg Biochem; 2021 Apr; 217():111371. PubMed ID: 33588279 [TBL] [Abstract][Full Text] [Related]
15. Methods to detect biomarkers of cellular senescence: the senescence-associated beta-galactosidase assay. Itahana K; Campisi J; Dimri GP Methods Mol Biol; 2007; 371():21-31. PubMed ID: 17634571 [TBL] [Abstract][Full Text] [Related]
16. A Tumor-Targeting Dual-Stimuli-Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Tam LKB; He L; Ng DKP; Cheung PCK; Lo PC Chemistry; 2022 Oct; 28(57):e202201652. PubMed ID: 35852020 [TBL] [Abstract][Full Text] [Related]
17. Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles. Ma X; Sreejith S; Zhao Y ACS Appl Mater Interfaces; 2013 Dec; 5(24):12860-8. PubMed ID: 24313634 [TBL] [Abstract][Full Text] [Related]
18. Chemical Strategies for the Detection and Elimination of Senescent Cells. García-Fleitas J; García-Fernández A; Martí-Centelles V; Sancenón F; Bernardos A; Martínez-Máñez R Acc Chem Res; 2024 May; 57(9):1238-1253. PubMed ID: 38604701 [TBL] [Abstract][Full Text] [Related]
19. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Choi J; Shendrik I; Peacocke M; Peehl D; Buttyan R; Ikeguchi EF; Katz AE; Benson MC Urology; 2000 Jul; 56(1):160-6. PubMed ID: 10869659 [TBL] [Abstract][Full Text] [Related]
20. A pH-responsive fluorescent probe and photosensitiser based on a self-quenched phthalocyanine dimer. Ke MR; Ng DK; Lo PC Chem Commun (Camb); 2012 Sep; 48(72):9065-7. PubMed ID: 22864462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]