BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38113272)

  • 1. Homogeneous and Label-Free Detection and Monitoring of Protein Kinase Activity Using the Impact Electrochemistry of Silver Nanoparticles.
    Liu M; Zhao X; Liang X; Zhou YG
    ACS Sens; 2024 Jan; 9(1):110-117. PubMed ID: 38113272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Tumor Protein Biomarkers from Lung Patient Serum Using Nanoimpact Electrochemistry.
    Zhang JH; Shen Q; Zhou YG
    ACS Sens; 2021 Jun; 6(6):2320-2329. PubMed ID: 34033456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct electrochemistry of silver nanoparticles-decorated metal-organic frameworks for telomerase activity sensing via allosteric activation of an aptamer hairpin.
    Wang Y; Dong P; Huang J; Xu H; Lei J; Zhang L
    Anal Chim Acta; 2021 Nov; 1184():339036. PubMed ID: 34625244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver Nanoparticle Detection in Real-World Environments via Particle Impact Electrochemistry.
    Li X; Batchelor-McAuley C; Compton RG
    ACS Sens; 2019 Feb; 4(2):464-470. PubMed ID: 30648851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold nanoparticle-based electrochemical detection of protein phosphorylation.
    Kerman K; Chikae M; Yamamura S; Tamiya E
    Anal Chim Acta; 2007 Apr; 588(1):26-33. PubMed ID: 17386790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplified electrochemical detection of protein kinase activity based on gold nanoparticles/multi-walled carbon nanotubes nanohybrids.
    Liu J; He X; Wang K; Wang Y; Yan G; Mao Y
    Talanta; 2014 Nov; 129():328-35. PubMed ID: 25127603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles.
    Miao P; Liu T; Li X; Ning L; Yin J; Han K
    Biosens Bioelectron; 2013 Nov; 49():20-4. PubMed ID: 23708813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.
    Khan ZU; Khan A; Shah A; Chen Y; Wan P; Khan AU; Tahir K; Muhamma N; Khan FU; Shah HU
    J Photochem Photobiol B; 2016 Mar; 156():100-7. PubMed ID: 26874611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of silver nanoparticle-hollow titanium phosphate sphere hybrid as a label for ultrasensitive electrochemical detection of human interleukin-6.
    Peng J; Feng LN; Ren ZJ; Jiang LP; Zhu JJ
    Small; 2011 Oct; 7(20):2921-8. PubMed ID: 21990194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-aggregation colorimetric sensing of cysteine using silver nanoparticles in the presence of Pb
    Mao L; Zhang Y; Zhang H; Liu H; Gao YP
    Anal Methods; 2024 Apr; 16(15):2378-2385. PubMed ID: 38572618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous Electrochemical Immunoassay Using an Aggregation-Collision Strategy for Alpha-Fetoprotein Detection.
    Zhang JH; Liu M; Zhou F; Yan HL; Zhou YG
    Anal Chem; 2023 Feb; 95(5):3045-3053. PubMed ID: 36692355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine.
    Alula MT; Karamchand L; Hendricks NR; Blackburn JM
    Anal Chim Acta; 2018 May; 1007():40-49. PubMed ID: 29405987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a dual-function peptide probe as a binder of angiotensin II and an inducer of silver nanoparticle aggregation for use in label-free colorimetric assays.
    Okochi M; Kuboyama M; Tanaka M; Honda H
    Talanta; 2015 Sep; 142():235-9. PubMed ID: 26003717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free and sensitive fluorescent assay for one step detection of protein kinase activity and inhibition.
    Wang L; Yan X; Su X
    Anal Chim Acta; 2016 Sep; 935():224-30. PubMed ID: 27543031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury.
    Jarujamrus P; Amatatongchai M; Thima A; Khongrangdee T; Mongkontong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():86-93. PubMed ID: 25699697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent detection of protein kinase based on positively charged gold nanoparticles.
    Lu G; Tan P; Lei C; Nie Z; Huang Y; Yao S
    Talanta; 2014 Oct; 128():360-5. PubMed ID: 25059172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silver nanoparticles decorated eggshell membrane as an effective platform for interference free sensing of dopamine.
    Datta S; Kanjilal B; Sarkar P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(12):1048-1055. PubMed ID: 29869928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoconfined Electrochemical Sensing of Single Silver Nanoparticles with a Wireless Nanopore Electrode.
    Yu RJ; Xu SW; Paul S; Ying YL; Cui LF; Daiguji H; Hsu WL; Long YT
    ACS Sens; 2021 Feb; 6(2):335-339. PubMed ID: 33373192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive quantification of mercury ions in real water systems based on an aggregation-collision electrochemical detection.
    Liu L; Peng M; Liang Z; Wu H; Yan H; Zhou YG
    Anal Chim Acta; 2023 Oct; 1276():341638. PubMed ID: 37573116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of functionalized silver nanoparticles as a biochemical sensor for selective detection of lysozyme protein in milk sample.
    Shrivas K; Nirmalkar N; Deb MK; Dewangan K; Nirmalkar J; Kumar S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():127-133. PubMed ID: 30684881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.