BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38113327)

  • 1. Eco-physiology of maize crops under combined stresses.
    Cagnola JI; D'Andrea KE; Rotili DH; Mercau JL; Ploschuk EL; Maddonni GA; Otegui ME; Casal JJ
    Plant J; 2024 Mar; 117(6):1856-1872. PubMed ID: 38113327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nitrogen supply method on root growth and grain yield of maize under alternate partial root-zone irrigation.
    Qi D; Hu T; Song X; Zhang M
    Sci Rep; 2019 Jun; 9(1):8191. PubMed ID: 31160666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield.
    Obata T; Witt S; Lisec J; Palacios-Rojas N; Florez-Sarasa I; Yousfi S; Araus JL; Cairns JE; Fernie AR
    Plant Physiol; 2015 Dec; 169(4):2665-83. PubMed ID: 26424159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytochrome B enhances plant growth, biomass and grain yield in field-grown maize.
    Wies G; Mantese AI; Casal JJ; Maddonni GÁ
    Ann Bot; 2019 Jun; 123(6):1079-1088. PubMed ID: 30778530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Soil Drought Stress on Selected Biochemical Parameters and Yield of Oat × Maize Addition (OMA) Lines.
    Warzecha T; Bocianowski J; Warchoł M; Bathelt R; Sutkowska A; Skrzypek E
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture.
    Yang Z; Cao Y; Shi Y; Qin F; Jiang C; Yang S
    Mol Plant; 2023 Oct; 16(10):1496-1517. PubMed ID: 37464740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing drought stress and trait influence on maize yield under current and future conditions.
    Harrison MT; Tardieu F; Dong Z; Messina CD; Hammer GL
    Glob Chang Biol; 2014 Mar; 20(3):867-78. PubMed ID: 24038882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (
    Pereira SIA; Abreu D; Moreira H; Vega A; Castro PML
    Heliyon; 2020 Oct; 6(10):e05106. PubMed ID: 33083600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of drought and heat stresses during reproductive stage on pollen germination, yield, and leaf reflectance properties in maize (
    Bheemanahalli R; Ramamoorthy P; Poudel S; Samiappan S; Wijewardane N; Reddy KR
    Plant Direct; 2022 Aug; 6(8):e434. PubMed ID: 35959217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.
    Yu P; White PJ; Li C
    Plant Signal Behav; 2015; 10(10):e1013795. PubMed ID: 26443081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elevated CO
    Vanaja M; Sarkar B; Sathish P; Jyothi Lakshmi N; Yadav SK; Mohan C; Sushma A; Yashavanth BS; Srinivasa Rao M; Prabhakar M; Singh VK
    Sci Rep; 2024 Feb; 14(1):2928. PubMed ID: 38316909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches.
    Jin Z; Zhuang Q; Tan Z; Dukes JS; Zheng B; Melillo JM
    Glob Chang Biol; 2016 Sep; 22(9):3112-26. PubMed ID: 27251794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forages and Pastures Symposium: development of and field experience with drought-tolerant maize.
    Soderlund S; Owens FN; Fagan C
    J Anim Sci; 2014 Jul; 92(7):2823-31. PubMed ID: 24496836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the effects of zinc sulfate nanoparticles and potassium fertilizers on quality of maize and associated health risks in Cd contaminated soils under different moisture regimes.
    Umair M; Zafar SH; Cheema M; Minhas R; Saeed AM; Saqib M; Aslam M
    Sci Total Environ; 2023 Oct; 896():165147. PubMed ID: 37392879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high plant density reduces the ability of maize to use soil nitrogen.
    Yan P; Pan J; Zhang W; Shi J; Chen X; Cui Z
    PLoS One; 2017; 12(2):e0172717. PubMed ID: 28234970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of management practices on water-related grain yield determinants.
    Echarte L; Alfonso CS; González H; Hernández MD; Lewczuk NA; Nagore L; Echarte MM
    J Exp Bot; 2023 Sep; 74(16):4825-4846. PubMed ID: 37490359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf angle: a target of genetic improvement in cereal crops tailored for high-density planting.
    Cao Y; Zhong Z; Wang H; Shen R
    Plant Biotechnol J; 2022 Mar; 20(3):426-436. PubMed ID: 35075761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt.
    Reyes A; Messina CD; Hammer GL; Liu L; van Oosterom E; Lafitte R; Cooper M
    J Exp Bot; 2015 Dec; 66(22):7339-46. PubMed ID: 26428065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.