BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38113377)

  • 1. Stable SERS Detection of Lactobacillus fermentum Using Optical Tweezers in a Microfluidic Environment.
    Shang L; Liang P; Xu L; Xue Y; Liu K; Wang Y; Bao X; Chen F; Peng H; Wang Y; Ju J; Li B
    Anal Chem; 2024 Jan; 96(1):248-255. PubMed ID: 38113377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures.
    Dai X; Fu W; Chi H; Mesias VSD; Zhu H; Leung CW; Liu W; Huang J
    Nat Commun; 2021 Feb; 12(1):1292. PubMed ID: 33637710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria encapsulation and rapid antibiotic susceptibility test using a microfluidic microwell device integrating surface-enhanced Raman scattering.
    Huang HK; Cheng HW; Liao CC; Lin SJ; Chen YZ; Wang JK; Wang YL; Huang NT
    Lab Chip; 2020 Jul; 20(14):2520-2528. PubMed ID: 32542276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Liquid Surface Enhanced Raman Scattering Platform Based on Soft Tubular Microfluidics for Label-Free Cell Detection.
    Xu X; Zhao L; Xue Q; Fan J; Hu Q; Tang C; Shi H; Hu B; Tian J
    Anal Chem; 2019 Jul; 91(13):7973-7979. PubMed ID: 31179690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of toxicity of Ag nanoparticles on SERS spectral variance of bacteria.
    Cui L; Chen S; Zhang K
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():1061-6. PubMed ID: 25291503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.
    Liu Y; Zhou H; Hu Z; Yu G; Yang D; Zhao J
    Biosens Bioelectron; 2017 Aug; 94():131-140. PubMed ID: 28262610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Progress of Surface-Enhanced Raman Spectroscopy for Bacteria Detection.
    Liu L; Ma W; Wang X; Li S
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-fiber surface-enhanced Raman scattering detection system combining an integrated microfluidic chip and micro-lensed fiber.
    Zheng D; Li W; Zhao B; Yang Z; Xia L
    Appl Opt; 2022 Jun; 61(16):4761-4767. PubMed ID: 36255957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Bacterial Pathogens at Genus and Species Levels through Combination of Raman Spectrometry and Deep-Learning Algorithms.
    Wang L; Tang JW; Li F; Usman M; Wu CY; Liu QH; Kang HQ; Liu W; Gu B
    Microbiol Spectr; 2022 Dec; 10(6):e0258022. PubMed ID: 36314973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?
    Panneerselvam R; Sadat H; Höhn EM; Das A; Noothalapati H; Belder D
    Lab Chip; 2022 Feb; 22(4):665-682. PubMed ID: 35107464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and accurate identification of pathogenic bacteria at the single-cell level using laser tweezers Raman spectroscopy and deep learning.
    Zhou B; Sun L; Fang T; Li H; Zhang R; Ye A
    J Biophotonics; 2022 Jul; 15(7):e202100312. PubMed ID: 35150463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Droplet-SERS Platform for Single-Cell Cytokine Analysis via a Cell Surface Bioconjugation Strategy.
    Cong L; Wang J; Li X; Tian Y; Xu S; Liang C; Xu W; Wang W; Xu S
    Anal Chem; 2022 Jul; 94(29):10375-10383. PubMed ID: 35815899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward rapid infectious disease diagnosis with advances in surface-enhanced Raman spectroscopy.
    Tadesse LF; Safir F; Ho CS; Hasbach X; Khuri-Yakub BP; Jeffrey SS; Saleh AAE; Dionne J
    J Chem Phys; 2020 Jun; 152(24):240902. PubMed ID: 32610995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining fiber optical tweezers and Raman spectroscopy for rapid identification of melanoma.
    Qiu X; He T; Wu X; Wang P; Wang X; Fu Q; Fang X; Li S; Li Y
    J Biophotonics; 2022 Dec; 15(12):e202200158. PubMed ID: 36053940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing.
    Kant K; Abalde-Cela S
    Biosensors (Basel); 2018 Jun; 8(3):. PubMed ID: 29966248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Learning-Assisted Surface-Enhanced Raman Scattering for Rapid Bacterial Identification.
    Tseng YM; Chen KL; Chao PH; Han YY; Huang NT
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26398-26406. PubMed ID: 37216401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy.
    Xie C; Mace J; Dinno MA; Li YQ; Tang W; Newton RJ; Gemperline PJ
    Anal Chem; 2005 Jul; 77(14):4390-7. PubMed ID: 16013851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SERS Nanowire Chip and Machine Learning-Enabled Classification of Wild-Type and Antibiotic-Resistant Bacteria at Species and Strain Levels.
    Das S; Saxena K; Tinguely JC; Pal A; Wickramasinghe NL; Khezri A; Dubey V; Ahmad A; Perumal V; Ahmad R; Wadduwage DN; Ahluwalia BS; Mehta DS
    ACS Appl Mater Interfaces; 2023 May; 15(20):24047-24058. PubMed ID: 37158639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.