These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 38113378)

  • 1. Assessment of the MARTINI 3 Performance for Short Peptide Self-Assembly.
    Sasselli IR; Coluzza I
    J Chem Theory Comput; 2024 Jan; 20(1):224-238. PubMed ID: 38113378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of pH on the self-assembly of diphenylalanine peptides: molecular insights from coarse-grained simulations.
    Wang Y; Wang K; Zhao X; Xu X; Sun T
    Soft Matter; 2023 Aug; 19(30):5749-5757. PubMed ID: 37462931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short Peptide Self-Assembly in the Martini Coarse-Grain Force Field Family.
    van Teijlingen A; Smith MC; Tuttle T
    Acc Chem Res; 2023 Mar; 56(6):644-654. PubMed ID: 36866851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Martini on the Rocks: Can a Coarse-Grained Force Field Model Crystals?
    Hosseini AN; van der Spoel D
    J Phys Chem Lett; 2024 Feb; 15(4):1079-1088. PubMed ID: 38261634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the mechanisms of cyclic peptide self-assembly in membranes with the chirality-aware MA(R/S)TINI forcefield.
    Cabezón A; Calvelo M; Granja JR; Piñeiro Á; Garcia-Fandino R
    J Colloid Interface Sci; 2023 Jul; 642():84-99. PubMed ID: 37001460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.
    Huang R; Su R; Qi W; Zhao J; He Z
    Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing Choline-Aromatics Cation-π Interactions in the MARTINI Force Field.
    Khan HM; Souza PCT; Thallmair S; Barnoud J; de Vries AH; Marrink SJ; Reuter N
    J Chem Theory Comput; 2020 Apr; 16(4):2550-2560. PubMed ID: 32096995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation kinetics of short peptides: All-atom and coarse-grained molecular dynamics study.
    Szała B; Molski A
    Biophys Chem; 2019 Oct; 253():106219. PubMed ID: 31301554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembly of Tetraphenylalanine Peptides.
    Mayans E; Ballano G; Casanovas J; Díaz A; Pérez-Madrigal MM; Estrany F; Puiggalí J; Cativiela C; Alemán C
    Chemistry; 2015 Nov; 21(47):16895-905. PubMed ID: 26419936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Coarse-Grained Force Field for Membrane-Peptide Simulations.
    Wu Z; Cui Q; Yethiraj A
    J Chem Theory Comput; 2011 Nov; 7(11):3793-802. PubMed ID: 26598270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.