These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38113378)

  • 41. Finite-Size Effects in Simulations of Peptide/Lipid Assembly.
    Jarin Z; Agolini O; Pastor RW
    J Membr Biol; 2022 Oct; 255(4-5):437-449. PubMed ID: 35854128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular simulations of peptide amphiphiles.
    Manandhar A; Kang M; Chakraborty K; Tang PK; Loverde SM
    Org Biomol Chem; 2017 Oct; 15(38):7993-8005. PubMed ID: 28853474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The MARTINI Coarse-Grained Force Field: Extension to Proteins.
    Monticelli L; Kandasamy SK; Periole X; Larson RG; Tieleman DP; Marrink SJ
    J Chem Theory Comput; 2008 May; 4(5):819-34. PubMed ID: 26621095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of Martini force field for molecular dynamics simulation of hydrophobic charge induction chromatography of lysozyme.
    Zhang L; Bai S; Sun Y
    J Mol Graph Model; 2011 Jun; 29(7):906-14. PubMed ID: 21441050
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coarse-grained molecular dynamics studies of the structure and stability of peptide-based drug amphiphile filaments.
    Kang M; Cui H; Loverde SM
    Soft Matter; 2017 Nov; 13(42):7721-7730. PubMed ID: 28905963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane partitioning of peptide aggregates: coarse-grained molecular dynamics simulations.
    Lien YH; Ram Mahato D; Hoppe-Seyler F; Fischer WB
    J Biomol Struct Dyn; 2020 Feb; 38(2):524-532. PubMed ID: 30774024
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules.
    Zaguri D; Zimmermann MR; Meisl G; Levin A; Rencus-Lazar S; Knowles TPJ; Gazit E
    ACS Nano; 2021 Nov; 15(11):18305-18311. PubMed ID: 34694771
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions on Proteins Arising from the Self-Assembly of a Polyelectrolyte Brush.
    Yao Y; Zhu YL; Ma X; Zhou J
    Langmuir; 2022 Jun; 38(25):7759-7765. PubMed ID: 35709429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field.
    Borges-Araújo L; Souza PCT; Fernandes F; Melo MN
    J Chem Theory Comput; 2022 Jan; 18(1):357-373. PubMed ID: 34962393
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates.
    Diaferia C; Avitabile C; Leone M; Gallo E; Saviano M; Accardo A; Romanelli A
    Chemistry; 2021 Oct; 27(57):14307-14316. PubMed ID: 34314536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.
    Dinesh B; Squillaci MA; Ménard-Moyon C; Samorì P; Bianco A
    Nanoscale; 2015 Oct; 7(38):15873-9. PubMed ID: 26359907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluating the Efficiency of the Martini Force Field to Study Protein Dimerization in Aqueous and Membrane Environments.
    Lamprakis C; Andreadelis I; Manchester J; Velez-Vega C; Duca JS; Cournia Z
    J Chem Theory Comput; 2021 May; 17(5):3088-3102. PubMed ID: 33913726
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Martini coarse-grained force field.
    Periole X; Marrink SJ
    Methods Mol Biol; 2013; 924():533-65. PubMed ID: 23034762
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interactions of phospholipid bilayers with several classes of amphiphilic alpha-helical peptides: insights from coarse-grained molecular dynamics simulations.
    Gkeka P; Sarkisov L
    J Phys Chem B; 2010 Jan; 114(2):826-39. PubMed ID: 20028006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Martini 3 Coarse-Grained Force Field for Cholesterol.
    Borges-Araújo L; Borges-Araújo AC; Ozturk TN; Ramirez-Echemendia DP; Fábián B; Carpenter TS; Thallmair S; Barnoud J; Ingólfsson HI; Hummer G; Tieleman DP; Marrink SJ; Souza PCT; Melo MN
    J Chem Theory Comput; 2023 Oct; 19(20):7387-7404. PubMed ID: 37796943
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Promising Route for the Development of a Computational Framework for Self-Assembly and Phase Behavior Prediction of Ionic Surfactants Using MARTINI.
    Anogiannakis SD; Petris PC; Theodorou DN
    J Phys Chem B; 2020 Jan; 124(3):556-567. PubMed ID: 31888338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coarse-grained modeling of peptidic/PDMS triblock morphology.
    Johnson JC; Korley LT; Tsige M
    J Phys Chem B; 2014 Nov; 118(47):13718-28. PubMed ID: 25394880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved Parameters for the Martini Coarse-Grained Protein Force Field.
    de Jong DH; Singh G; Bennett WF; Arnarez C; Wassenaar TA; Schäfer LV; Periole X; Tieleman DP; Marrink SJ
    J Chem Theory Comput; 2013 Jan; 9(1):687-97. PubMed ID: 26589065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.