These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 381134)

  • 21. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms.
    Fu SF; Wei JY; Chen HW; Liu YY; Lu HY; Chou JY
    Plant Signal Behav; 2015; 10(8):e1048052. PubMed ID: 26179718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial hydroxylation of ML-236B (compactin). Studies on microorganisms capable of 3 beta-hydroxylation of ML-236B.
    Serizawa N; Serizawa S; Nakagawa K; Furuya K; Okazaki T; Terahara A
    J Antibiot (Tokyo); 1983 Jul; 36(7):887-91. PubMed ID: 6684108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Synthesis, function, and evolutionary origin of secondary metabolites produced by micro-organisms].
    Santana C; Segura D; Sánchez S
    Rev Latinoam Microbiol; 1994; 36(2):139-58. PubMed ID: 7973181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The influence of diesel fuel oil on the number of bacteria, fungi, actinomycetes and soil microbial biomass].
    Michalcewicz W
    Rocz Panstw Zakl Hig; 1995; 46(1):91-7. PubMed ID: 7481509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial growth and production of antibiotics.
    Vanĕk Z; Mikulík K
    Folia Microbiol (Praha); 1978; 23(4):309-28. PubMed ID: 357271
    [No Abstract]   [Full Text] [Related]  

  • 26. [Microbial inhibitors of hydrolases--the isolation and study of their properties].
    Angelov T; Kurteva I; Perets V; Avramova T; Darakchieva M
    Acta Microbiol Bulg; 1985; 17():32-9. PubMed ID: 3834767
    [No Abstract]   [Full Text] [Related]  

  • 27. Quantification of control of microbial metabolism by substrates and enzymes.
    van Dam K; Jansen N
    Antonie Van Leeuwenhoek; 1991; 60(3-4):209-23. PubMed ID: 1807195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical ecology of antibiotic production by actinomycetes.
    van der Meij A; Worsley SF; Hutchings MI; van Wezel GP
    FEMS Microbiol Rev; 2017 May; 41(3):392-416. PubMed ID: 28521336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Benthic bacterial and fungal productivity and carbon turnover in a freshwater marsh.
    Buesing N; Gessner MO
    Appl Environ Microbiol; 2006 Jan; 72(1):596-605. PubMed ID: 16391096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox.
    Snoep JL; Jensen PR; Groeneveld P; Molenaar D; Kholodenko BN; Westerhoff HV
    Biochem Mol Biol Int; 1994 Aug; 33(5):1023-32. PubMed ID: 7987249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of primary metabolites on secondary metabolism.
    Drew SW; Demain AL
    Annu Rev Microbiol; 1977; 31():343-56. PubMed ID: 71875
    [No Abstract]   [Full Text] [Related]  

  • 32. Special issue of Current Opinion in Microbiology, focused on 'Ecology and Industrial Microbiology'.
    Top EM; Wilson DB
    Curr Opin Microbiol; 2011 Jun; 14(3):227-8. PubMed ID: 21570338
    [No Abstract]   [Full Text] [Related]  

  • 33. [Extractable microbial DNA pool and microbial activity in paleosols of Southern Ural].
    Blagodatskaia EV; Khokhlova OS; Anderson TH; Blagodatskiĭ SA
    Mikrobiologiia; 2003; 72(6):847-53. PubMed ID: 14768554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth control in microbial cultures.
    Meyer HP; Käppeli O; Fiechter A
    Annu Rev Microbiol; 1985; 39():299-319. PubMed ID: 2415058
    [No Abstract]   [Full Text] [Related]  

  • 35. [Ways of optimizing processes for obtaining secondary microbial exometabolites].
    Basnak'ian IA; Shaforostova LD; Zaporozhtsev LN
    Zh Mikrobiol Epidemiol Immunobiol; 1979 Jan; (1):32-9. PubMed ID: 371264
    [No Abstract]   [Full Text] [Related]  

  • 36. Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds.
    Mishra S; Upadhyay RS; Nautiyal CS
    Appl Microbiol Biotechnol; 2013 Jul; 97(13):5659-68. PubMed ID: 23720032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth of saprotrophic fungi and bacteria in soil.
    Rousk J; Bååth E
    FEMS Microbiol Ecol; 2011 Oct; 78(1):17-30. PubMed ID: 21470255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical ecology of endophytic fungi: origins of secondary metabolites.
    Kusari S; Hertweck C; Spiteller M
    Chem Biol; 2012 Jul; 19(7):792-8. PubMed ID: 22840767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Living in a fungal world: impact of fungi on soil bacterial niche development.
    Boer Wd; Folman LB; Summerbell RC; Boddy L
    FEMS Microbiol Rev; 2005 Sep; 29(4):795-811. PubMed ID: 16102603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxic effects of oxytetracycline and copper, separately or combined, on soil microbial biomasses.
    Wang L; Wang J; Zhu L; Wang J
    Environ Geochem Health; 2018 Apr; 40(2):763-776. PubMed ID: 29027092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.