BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38113861)

  • 1. A Deep Learning Model for Detecting Rhegmatogenous Retinal Detachment Using Ophthalmologic Ultrasound Images.
    Wang H; Chen X; Miao X; Tang S; Lin Y; Zhang X; Chen Y; Zhu Y
    Ophthalmologica; 2024; 247(1):8-18. PubMed ID: 38113861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning system for identifying lattice degeneration and retinal breaks using ultra-widefield fundus images.
    Li Z; Guo C; Nie D; Lin D; Zhu Y; Chen C; Zhang L; Xu F; Jin C; Zhang X; Xiao H; Zhang K; Zhao L; Yu S; Zhang G; Wang J; Lin H
    Ann Transl Med; 2019 Nov; 7(22):618. PubMed ID: 31930019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment.
    Ohsugi H; Tabuchi H; Enno H; Ishitobi N
    Sci Rep; 2017 Aug; 7(1):9425. PubMed ID: 28842613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence using deep learning to predict the anatomical outcome of rhegmatogenous retinal detachment surgery: a pilot study.
    Fung THM; John NCRA; Guillemaut JY; Yorston D; Frohlich D; Steel DHW; Williamson TH;
    Graefes Arch Clin Exp Ophthalmol; 2023 Mar; 261(3):715-721. PubMed ID: 36303063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Detection of Peripheral Retinal Lesions From Ultrawide-Field Fundus Images Using Deep Learning.
    Tang YW; Ji J; Lin JW; Wang J; Wang Y; Liu Z; Hu Z; Yang JF; Ng TK; Zhang M; Pang CP; Cen LP
    Asia Pac J Ophthalmol (Phila); 2023 May-Jun 01; 12(3):284-292. PubMed ID: 36912572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a deep-learning system for detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field fundus images: a pilot study.
    Zhang C; He F; Li B; Wang H; He X; Li X; Yu W; Chen Y
    Graefes Arch Clin Exp Ophthalmol; 2021 Aug; 259(8):2225-2234. PubMed ID: 33538890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images.
    Li Z; Guo C; Nie D; Lin D; Zhu Y; Chen C; Xiang Y; Xu F; Jin C; Zhang X; Yang Y; Zhang K; Zhao L; Zhang P; Han Y; Yun D; Wu X; Yan P; Lin H
    Transl Vis Sci Technol; 2020 Jan; 9(2):3. PubMed ID: 32518708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning-based automated detection of glaucomatous optic neuropathy on color fundus photographs.
    Li F; Yan L; Wang Y; Shi J; Chen H; Zhang X; Jiang M; Wu Z; Zhou K
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):851-867. PubMed ID: 31989285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning-Based Automated Detection of Retinal Breaks and Detachments on Fundus Photography.
    Christ M; Habra O; Monnin K; Vallotton K; Sznitman R; Wolf S; Zinkernagel M; Márquez Neila P
    Transl Vis Sci Technol; 2024 Apr; 13(4):1. PubMed ID: 38564203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Performance of Ultra-Widefield Fundus Imaging for Screening Retinal Lesions in Rural Locales.
    Cui T; Lin D; Yu S; Zhao X; Lin Z; Zhao L; Xu F; Yun D; Pang J; Li R; Xie L; Zhu P; Huang Y; Huang H; Hu C; Huang W; Liang X; Lin H
    JAMA Ophthalmol; 2023 Nov; 141(11):1045-1051. PubMed ID: 37856107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning model for automatic image quality assessment in PET.
    Zhang H; Liu Y; Wang Y; Ma Y; Niu N; Jing H; Huo L
    BMC Med Imaging; 2023 Jun; 23(1):75. PubMed ID: 37277706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography.
    Lo YC; Lin KH; Bair H; Sheu WH; Chang CS; Shen YC; Hung CL
    Sci Rep; 2020 May; 10(1):8424. PubMed ID: 32439844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DETECTION AND LOCALIZATION OF RETINAL BREAKS IN ULTRAWIDEFIELD FUNDUS PHOTOGRAPHY USING a YOLO v3 ARCHITECTURE-BASED DEEP LEARNING MODEL.
    Oh R; Oh BL; Lee EK; Park UC; Yu HG; Yoon CK
    Retina; 2022 Oct; 42(10):1889-1896. PubMed ID: 36129265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-widefield autofluorescence imaging findings in retinoschisis, rhegmatogenous retinal detachment and combined retinoschisis retinal detachment.
    Navaratnam J; Salvanos P; Vavvas DG; Bragadóttir R
    Acta Ophthalmol; 2021 Mar; 99(2):195-200. PubMed ID: 32602221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.
    Gulshan V; Peng L; Coram M; Stumpe MC; Wu D; Narayanaswamy A; Venugopalan S; Widner K; Madams T; Cuadros J; Kim R; Raman R; Nelson PC; Mega JL; Webster DR
    JAMA; 2016 Dec; 316(22):2402-2410. PubMed ID: 27898976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction of glaucoma from colour fundus images with a convolutional neural network that relies on active and transfer learning.
    Hemelings R; Elen B; Barbosa-Breda J; Lemmens S; Meire M; Pourjavan S; Vandewalle E; Van de Veire S; Blaschko MB; De Boever P; Stalmans I
    Acta Ophthalmol; 2020 Feb; 98(1):e94-e100. PubMed ID: 31344328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Deep Generative Models for High-Resolution Synthetic Retinal Image Generation of Age-Related Macular Degeneration.
    Burlina PM; Joshi N; Pacheco KD; Liu TYA; Bressler NM
    JAMA Ophthalmol; 2019 Mar; 137(3):258-264. PubMed ID: 30629091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.
    Yoo TK; Choi JY; Seo JG; Ramasubramanian B; Selvaperumal S; Kim DW
    Med Biol Eng Comput; 2019 Mar; 57(3):677-687. PubMed ID: 30349958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.
    Keel S; Li Z; Scheetz J; Robman L; Phung J; Makeyeva G; Aung K; Liu C; Yan X; Meng W; Guymer R; Chang R; He M
    Clin Exp Ophthalmol; 2019 Nov; 47(8):1009-1018. PubMed ID: 31215760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.