These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38113980)
1. Carbon dots for staining bacterial dead cells and distinguishing dead/alive bacteria. Liu Y; Xu Y; Wen Q Anal Biochem; 2024 Apr; 687():115432. PubMed ID: 38113980 [TBL] [Abstract][Full Text] [Related]
2. Fluorescent carbon dots for labeling of bacteria: mechanism and prospects-a review. Anand A; Huang CC; Lai JY; Bano D; Pardede HI; Hussain A; Saleem S; Unnikrishnan B Anal Bioanal Chem; 2024 Jul; 416(17):3907-3921. PubMed ID: 38656364 [TBL] [Abstract][Full Text] [Related]
3. Rose Bengal-Derived Ultrabright Sulfur-Doped Carbon Dots for Fast Discrimination between Live and Dead Cells. Yu XW; Liu X; Jiang YW; Li YH; Gao G; Zhu YX; Lin F; Wu FG Anal Chem; 2022 Mar; 94(10):4243-4251. PubMed ID: 35235297 [TBL] [Abstract][Full Text] [Related]
4. Bacteria-derived fluorescent carbon dots for microbial live/dead differentiation. Hua XW; Bao YW; Wang HY; Chen Z; Wu FG Nanoscale; 2017 Feb; 9(6):2150-2161. PubMed ID: 27874123 [TBL] [Abstract][Full Text] [Related]
5. Primary Amine Functionalized Carbon Dots for Dead and Alive Bacterial Imaging. Liu Y; Zhong D; Yu L; Shi Y; Xu Y Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770398 [TBL] [Abstract][Full Text] [Related]
6. Beer yeast-derived fluorescent carbon dots for photoinduced bactericidal functions and multicolor imaging of bacteria. Gao Z; Zhao CX; Li YY; Yang YL Appl Microbiol Biotechnol; 2019 Jun; 103(11):4585-4593. PubMed ID: 30963206 [TBL] [Abstract][Full Text] [Related]
7. Applications of hydrothermal synthesis of Escherichia coli derived carbon dots in in vitro and in vivo imaging and p-nitrophenol detection. Qin K; Zhang D; Ding Y; Zheng X; Xiang Y; Hua J; Zhang Q; Ji X; Li B; Wei Y Analyst; 2019 Dec; 145(1):177-183. PubMed ID: 31729506 [TBL] [Abstract][Full Text] [Related]
8. Highly selective and sensitive fluorescence sensing of nanomolar Zn Kaur H; Raj P; Sharma H; Verma M; Singh N; Kaur N Anal Chim Acta; 2018 Jun; 1009():1-11. PubMed ID: 29422126 [TBL] [Abstract][Full Text] [Related]
9. [Fluorescent carbon dots and the application in biomedicine]. Zhang S; Gao HL; Shen S; Wang WL; Qian J Yao Xue Xue Bao; 2014 Sep; 49(9):1258-66. PubMed ID: 25518324 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. Ran HH; Cheng X; Bao YW; Hua XW; Gao G; Zhang X; Jiang YW; Zhu YX; Wu FG J Mater Chem B; 2019 Aug; 7(33):5104-5114. PubMed ID: 31432881 [TBL] [Abstract][Full Text] [Related]
11. Ultra-bright carbon quantum dots for rapid cell staining. Zhu T; Cao L; Zhou Z; Guo H; Ge M; Dong WF; Li L Analyst; 2022 May; 147(11):2558-2566. PubMed ID: 35551289 [TBL] [Abstract][Full Text] [Related]
12. Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Das P; Bose M; Ganguly S; Mondal S; Das AK; Banerjee S; Das NC Nanotechnology; 2017 May; 28(19):195501. PubMed ID: 28417900 [TBL] [Abstract][Full Text] [Related]
13. Morpholine Derivative-Functionalized Carbon Dots-Based Fluorescent Probe for Highly Selective Lysosomal Imaging in Living Cells. Wu L; Li X; Ling Y; Huang C; Jia N ACS Appl Mater Interfaces; 2017 Aug; 9(34):28222-28232. PubMed ID: 28787116 [TBL] [Abstract][Full Text] [Related]
14. Highly fluorescent carbon dots from wheat bran as a novel drug delivery system for bacterial inhibition. John TS; Yadav PK; Kumar D; Singh SK; Hasan SH Luminescence; 2020 Sep; 35(6):913-923. PubMed ID: 32198843 [TBL] [Abstract][Full Text] [Related]
15. Efficient imaging based on P - and N-codoped carbon dots for tracking division and viability assessment of lactic acid bacteria. Fu T; Wan Y; Jin F; Liu B; Wang J; Yin X; Fu X; Tian B; Feng Z Colloids Surf B Biointerfaces; 2023 Mar; 223():113155. PubMed ID: 36724563 [TBL] [Abstract][Full Text] [Related]
16. Green synthesis of multipurpose carbon quantum dots from red cabbage and estimation of their antioxidant potential and bio-labeling activity. Sharma N; Das GS; Yun K Appl Microbiol Biotechnol; 2020 Aug; 104(16):7187-7200. PubMed ID: 32572575 [TBL] [Abstract][Full Text] [Related]
17. Facile Hydrothermal Synthesis of Chlorella-Derived Environmentally Friendly Fluorescent Carbon Dots for Differentiation of Living and Dead Chlorella. Dong D; Liu T; Liang D; Jin X; Qi Z; Li A; Ning Y ACS Appl Bio Mater; 2021 Apr; 4(4):3697-3705. PubMed ID: 35014454 [TBL] [Abstract][Full Text] [Related]
18. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Wang N; Wang Y; Guo T; Yang T; Chen M; Wang J Biosens Bioelectron; 2016 Nov; 85():68-75. PubMed ID: 27155118 [TBL] [Abstract][Full Text] [Related]
19. Green and Orange Fluorescent Carbon Dots for Detecting Oral Cancer by Staining Tissue Sections. Peng X; Yang H; Li C; Zhang Y; Chen S; Long Y J Nanosci Nanotechnol; 2019 Dec; 19(12):7509-7516. PubMed ID: 31196254 [TBL] [Abstract][Full Text] [Related]
20. Novel fluorescent nitrogen-doped carbon dots derived from Panax notoginseng for bioimaging and high selectivity detection of Cr Zheng X; Qin K; He L; Ding Y; Luo Q; Zhang C; Cui X; Tan Y; Li L; Wei Y Analyst; 2021 Feb; 146(3):911-919. PubMed ID: 33237046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]