These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38114455)

  • 1. Magmatic immiscibility and the origin of magnetite-(apatite) iron deposits.
    Pietruszka DK; Hanchar JM; Tornos F; Wirth R; Graham NA; Severin KP; Velasco F; Steele-MacInnis M; Bain WM
    Nat Commun; 2023 Dec; 14(1):8424. PubMed ID: 38114455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic model of the El Laco magnetite-apatite deposits by extrusion of iron-rich melt.
    Keller T; Tornos F; Hanchar JM; Pietruszka DK; Soldati A; Dingwell DB; Suckale J
    Nat Commun; 2022 Oct; 13(1):6114. PubMed ID: 36253366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immiscible hydrous Fe-Ca-P melt and the origin of iron oxide-apatite ore deposits.
    Hou T; Charlier B; Holtz F; Veksler I; Zhang Z; Thomas R; Namur O
    Nat Commun; 2018 Apr; 9(1):1415. PubMed ID: 29650951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal evolution of Andean iron oxide-apatite (IOA) deposits as revealed by magnetite thermometry.
    Palma G; Reich M; Barra F; Ovalle JT; Del Real I; Simon AC
    Sci Rep; 2021 Sep; 11(1):18424. PubMed ID: 34531472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The origin of Cu/Au ratios in porphyry-type ore deposits.
    Halter WE; Pettke T; Heinrich CA
    Science; 2002 Jun; 296(5574):1844-6. PubMed ID: 12052953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Montecristo mining district, northern Chile: the relationship between vein-like magnetite-(apatite) and iron oxide-copper-gold deposits.
    Mateo L; Tornos F; Hanchar JM; Villa IM; Stein HJ; Delgado A
    Miner Depos; 2023; 58(6):1023-1049. PubMed ID: 37426339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of massive iron deposits linked to explosive volcanic eruptions.
    Ovalle JT; La Cruz NL; Reich M; Barra F; Simon AC; Konecke BA; Rodriguez-Mustafa MA; Deditius AP; Childress TM; Morata D
    Sci Rep; 2018 Oct; 8(1):14855. PubMed ID: 30291283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of iron-rich hydrosaline liquids in the formation of Kiruna-type iron oxide-apatite deposits.
    Zeng LP; Zhao XF; Spandler C; Mavrogenes JA; Mernagh TP; Liao W; Fan YZ; Hu Y; Fu B; Li JW
    Sci Adv; 2024 Apr; 10(17):eadk2174. PubMed ID: 38657067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magmatic-hydrothermal fluid evolution of the tin-polymetallic metallogenic systems from the Weilasituo ore district, Northeast China.
    Gao X; Zhou Z; Breiter K; Mao J; Romer RL; Cook NJ; Holtz F
    Sci Rep; 2024 Feb; 14(1):3006. PubMed ID: 38321094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of alkali-rich volcanic and alkali-poor intrusive carbonatites from a common parental magma.
    Chayka IF; Kamenetsky VS; Vladykin NV; Kontonikas-Charos A; Prokopyev IR; Stepanov SY; Krasheninnikov SP
    Sci Rep; 2021 Sep; 11(1):17627. PubMed ID: 34475480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gold content of mafic to felsic potassic magmas.
    Chang J; Audétat A; Pettke T
    Nat Commun; 2024 Aug; 15(1):6988. PubMed ID: 39143075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global Fe-O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores.
    Troll VR; Weis FA; Jonsson E; Andersson UB; Majidi SA; Högdahl K; Harris C; Millet MA; Chinnasamy SS; Kooijman E; Nilsson KP
    Nat Commun; 2019 Apr; 10(1):1712. PubMed ID: 30979878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melt inclusions in veins: linking magmas and porphyry Cu deposits.
    Harris AC; Kamenetsky VS; White NC; van Achterbergh E; Ryan CG
    Science; 2003 Dec; 302(5653):2109-11. PubMed ID: 14684818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silicate liquid immiscibility in lunar magmas, evidenced by melt inclusions in lunar rocks.
    Roedder E; Weiblen PW
    Science; 1970 Jan; 167(3918):641-4. PubMed ID: 17781528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper sulfide deposition and remobilisation triggered by non-magmatic fluid incursion in the single-intrusion Tongchang porphyry system, SE China.
    Liu X; Richard A; Pironon J; Yang K
    Sci Rep; 2024 Jan; 14(1):2576. PubMed ID: 38297039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite.
    Spandler C; O'Neill HS; Kamenetsky VS
    Nature; 2007 May; 447(7142):303-6. PubMed ID: 17507980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of carbonatites-liquid immiscibility caught in the act.
    Berndt J; Klemme S
    Nat Commun; 2022 May; 13(1):2892. PubMed ID: 35610205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting magma chemistry in the Candelaria IOCG district caused by changing tectonic regimes.
    Romero R; Barra F; Reich M; Ojeda A; Tapia MJ; Del Real I; Simon A
    Sci Rep; 2024 May; 14(1):10793. PubMed ID: 38734754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur and chlorine budgets control the ore fertility of arc magmas.
    Grondahl C; Zajacz Z
    Nat Commun; 2022 Jul; 13(1):4218. PubMed ID: 35864119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilisation of deep crustal sulfide melts as a first order control on upper lithospheric metallogeny.
    Holwell DA; Fiorentini ML; Knott TR; McDonald I; Blanks DE; Campbell McCuaig T; Gorczyk W
    Nat Commun; 2022 Jan; 13(1):573. PubMed ID: 35102157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.