These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38114592)

  • 1. Depth-aware pose estimation using deep learning for exoskeleton gait analysis.
    Wang Y; Pei Z; Wang C; Tang Z
    Sci Rep; 2023 Dec; 13(1):22681. PubMed ID: 38114592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Lightweight Exoskeleton-Based Portable Gait Data Collection System.
    Haque MR; Imtiaz MH; Kwak ST; Sazonov E; Chang YH; Shen X
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33498956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lower Limb Exoskeleton Gait Planning Based on Crutch and Human-Machine Foot Combined Center of Pressure.
    Yang W; Zhang J; Zhang S; Yang C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33339443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment.
    Wang Y; Liu Z; Feng Z
    Clin Biomech (Bristol, Avon); 2022 May; 95():105660. PubMed ID: 35561659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination.
    Zhu F; Kern M; Fowkes E; Afzal T; Contreras-Vidal JL; Francisco GE; Chang SH
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 33752175
    [No Abstract]   [Full Text] [Related]  

  • 10. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER).
    Nasiri R; Dinovitzer H; Arami A
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Intelligent Rehabilitation Assessment Method for Stroke Patients Based on Lower Limb Exoskeleton Robot.
    Zhang S; Fan L; Ye J; Chen G; Fu C; Leng Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3106-3117. PubMed ID: 37490379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Gait Speed on Trajectory Prediction Using Deep Learning Models for Exoskeleton Applications.
    Kolaghassi R; Marcelli G; Sirlantzis K
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of Limb Joint Angles Based on Multi-Source Signals by GS-GRNN for Exoskeleton Wearer.
    Xie H; Li G; Zhao X; Li F
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic Analysis of Exoskeleton-Assisted Community Ambulation: An Observational Study in Outdoor Real-Life Scenarios.
    Goffredo M; Romano P; Infarinato F; Cioeta M; Franceschini M; Galafate D; Iacopini R; Pournajaf S; Ottaviani M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait Trajectory and Event Prediction from State Estimation for Exoskeletons During Gait.
    Tanghe K; De Groote F; Lefeber D; De Schutter J; Aertbelien E
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):211-220. PubMed ID: 31675336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals.
    Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL
    J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and analysis of a lightweight lower extremity exoskeleton with novel compliant ankle joints.
    He Y; Liu J; Li F; Cao W; Wu X
    Technol Health Care; 2022; 30(4):881-894. PubMed ID: 34657860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iterative Learning Control for a Soft Exoskeleton with Hip and Knee Joint Assistance.
    Chen C; Zhang Y; Li Y; Wang Z; Liu Y; Cao W; Wu X
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.