These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38114881)
41. Enhancing clinical concept extraction with contextual embeddings. Si Y; Wang J; Xu H; Roberts K J Am Med Inform Assoc; 2019 Nov; 26(11):1297-1304. PubMed ID: 31265066 [TBL] [Abstract][Full Text] [Related]
42. Vector representations of multi-word terms for semantic relatedness. Henry S; Cuffy C; McInnes BT J Biomed Inform; 2018 Jan; 77():111-119. PubMed ID: 29247788 [TBL] [Abstract][Full Text] [Related]
43. Identification of efflux proteins based on contextual representations with deep bidirectional transformer encoders. Taju SW; Shah SMA; Ou YY Anal Biochem; 2021 Nov; 633():114416. PubMed ID: 34656612 [TBL] [Abstract][Full Text] [Related]
44. Unsupervised low-dimensional vector representations for words, phrases and text that are transparent, scalable, and produce similarity metrics that are not redundant with neural embeddings. Smalheiser NR; Cohen AM; Bonifield G J Biomed Inform; 2019 Feb; 90():103096. PubMed ID: 30654030 [TBL] [Abstract][Full Text] [Related]
45. Alignment of brain embeddings and artificial contextual embeddings in natural language points to common geometric patterns. Goldstein A; Grinstein-Dabush A; Schain M; Wang H; Hong Z; Aubrey B; Nastase SA; Zada Z; Ham E; Feder A; Gazula H; Buchnik E; Doyle W; Devore S; Dugan P; Reichart R; Friedman D; Brenner M; Hassidim A; Devinsky O; Flinker A; Hasson U Nat Commun; 2024 Mar; 15(1):2768. PubMed ID: 38553456 [TBL] [Abstract][Full Text] [Related]
46. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks. Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224 [TBL] [Abstract][Full Text] [Related]
47. Jointly learning word embeddings using a corpus and a knowledge base. Alsuhaibani M; Bollegala D; Maehara T; Kawarabayashi KI PLoS One; 2018; 13(3):e0193094. PubMed ID: 29529052 [TBL] [Abstract][Full Text] [Related]
48. Multi-class sentiment analysis of urdu text using multilingual BERT. Khan L; Amjad A; Ashraf N; Chang HT Sci Rep; 2022 Mar; 12(1):5436. PubMed ID: 35361890 [TBL] [Abstract][Full Text] [Related]
49. Biologically Plausible Sparse Temporal Word Representations. Liu Y; Chen W; Liu H; Zhang Y; Zhang M; Qu H IEEE Trans Neural Netw Learn Syst; 2024 Nov; 35(11):16952-16959. PubMed ID: 37410643 [TBL] [Abstract][Full Text] [Related]
50. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records. Chen Q; Du J; Kim S; Wilbur WJ; Lu Z BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):73. PubMed ID: 32349758 [TBL] [Abstract][Full Text] [Related]
52. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Lee J; Yoon W; Kim S; Kim D; Kim S; So CH; Kang J Bioinformatics; 2020 Feb; 36(4):1234-1240. PubMed ID: 31501885 [TBL] [Abstract][Full Text] [Related]
53. Word embeddings trained on published case reports are lightweight, effective for clinical tasks, and free of protected health information. Flamholz ZN; Crane-Droesch A; Ungar LH; Weissman GE J Biomed Inform; 2022 Jan; 125():103971. PubMed ID: 34920127 [TBL] [Abstract][Full Text] [Related]
54. Biomedical Text Classification Using Augmented Word Representation Based on Distributional and Relational Contexts. Parwez MA; Fazil M; Arif M; Nafis MT; Auwul MR Comput Intell Neurosci; 2023; 2023():2989791. PubMed ID: 39262497 [TBL] [Abstract][Full Text] [Related]
55. Are abstract action words embodied? An fMRI investigation at the interface between language and motor cognition. Sakreida K; Scorolli C; Menz MM; Heim S; Borghi AM; Binkofski F Front Hum Neurosci; 2013; 7():125. PubMed ID: 23576972 [TBL] [Abstract][Full Text] [Related]
56. Comparison of an Ensemble of Machine Learning Models and the BERT Language Model for Analysis of Text Descriptions of Brain CT Reports to Determine the Presence of Intracranial Hemorrhage. Khoruzhaya AN; Kozlov DV; Arzamasov KM; Kremneva EI Sovrem Tekhnologii Med; 2024; 16(1):27-34. PubMed ID: 39421632 [TBL] [Abstract][Full Text] [Related]
57. Development and evaluation of novel ophthalmology domain-specific neural word embeddings to predict visual prognosis. Wang S; Tseng B; Hernandez-Boussard T Int J Med Inform; 2021 Jun; 150():104464. PubMed ID: 33892445 [TBL] [Abstract][Full Text] [Related]
58. GT-Finder: Classify the family of glucose transporters with pre-trained BERT language models. Ali Shah SM; Taju SW; Ho QT; Nguyen TT; Ou YY Comput Biol Med; 2021 Apr; 131():104259. PubMed ID: 33581474 [TBL] [Abstract][Full Text] [Related]
59. Optimizing Corpus Creation for Training Word Embedding in Low Resource Domains: A Case Study in Autism Spectrum Disorder (ASD). Gu Y; Leroy G; Pettygrove S; Galindo MK; Kurzius-Spencer M AMIA Annu Symp Proc; 2018; 2018():508-517. PubMed ID: 30815091 [TBL] [Abstract][Full Text] [Related]
60. An Integrated Neural Decoder of Linguistic and Experiential Meaning. Anderson AJ; Binder JR; Fernandino L; Humphries CJ; Conant LL; Raizada RDS; Lin F; Lalor EC J Neurosci; 2019 Nov; 39(45):8969-8987. PubMed ID: 31570538 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]