These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 38115006)

  • 1. RAGE plays key role in diabetic retinopathy: a review.
    Lu Z; Fan B; Li Y; Zhang Y
    Biomed Eng Online; 2023 Dec; 22(1):128. PubMed ID: 38115006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-150 (miR-150) and Diabetic Retinopathy: Is miR-150 Only a Biomarker or Does It Contribute to Disease Progression?
    Ko GY; Yu F; Bayless KJ; Ko ML
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36292956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of HMGB1 signaling in the inflammatory process in diabetic retinopathy.
    Steinle JJ
    Cell Signal; 2020 Sep; 73():109687. PubMed ID: 32497617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extract of Polygonum cuspidatum Attenuates Diabetic Retinopathy by Inhibiting the High-Mobility Group Box-1 (HMGB1) Signaling Pathway in Streptozotocin-Induced Diabetic Rats.
    Sohn E; Kim J; Kim CS; Lee YM; Kim JS
    Nutrients; 2016 Mar; 8(3):140. PubMed ID: 26950148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina.
    Lechner J; Medina RJ; Lois N; Stitt AW
    Stem Cell Res Ther; 2022 Jul; 13(1):388. PubMed ID: 35907890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurovascular regulation in diabetic retinopathy and emerging therapies.
    Ji L; Tian H; Webster KA; Li W
    Cell Mol Life Sci; 2021 Aug; 78(16):5977-5985. PubMed ID: 34230991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone morphogenetic protein 2: a potential new player in the pathogenesis of diabetic retinopathy.
    Hussein KA; Choksi K; Akeel S; Ahmad S; Megyerdi S; El-Sherbiny M; Nawaz M; Abu El-Asrar A; Al-Shabrawey M
    Exp Eye Res; 2014 Aug; 125():79-88. PubMed ID: 24910902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new view of diabetic retinopathy: a neurodegenerative disease of the eye.
    Barber AJ
    Prog Neuropsychopharmacol Biol Psychiatry; 2003 Apr; 27(2):283-90. PubMed ID: 12657367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of lipocalin-2-mediated effects in diabetic retinopathy.
    Zhang Y; Song X; Qi T; Zhou X
    Int Ophthalmol; 2024 Feb; 44(1):78. PubMed ID: 38351392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Runx1 regulates Tff1 expression to expedite viability of retinal microvascular endothelial cells in mice with diabetic retinopathy.
    Zhang W; Zhang D; Cheng Y; Liang X; Wang J
    Exp Eye Res; 2022 Apr; 217():108969. PubMed ID: 35114215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy.
    Narayanan SP; Shosha E; D Palani C
    Pharmacol Res; 2019 Sep; 147():104299. PubMed ID: 31207342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic Insights into Pathological Changes in the Diabetic Retina: Implications for Targeting Diabetic Retinopathy.
    Roy S; Kern TS; Song B; Stuebe C
    Am J Pathol; 2017 Jan; 187(1):9-19. PubMed ID: 27846381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fangchinoline Ameliorates Diabetic Retinopathy by Inhibiting Receptor for Advanced Glycation End-Products (RAGE)-Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB) Pathway in Streptozotocin (STZ)-Induced Diabetic Rats.
    Wu Q; Liu H; Zhou M
    Med Sci Monit; 2019 Feb; 25():1113-1121. PubMed ID: 30739905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RAGE and its ligands in retinal disease.
    Barile GR; Schmidt AM
    Curr Mol Med; 2007 Dec; 7(8):758-65. PubMed ID: 18331234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological Perturbations in Diabetic Retinopathy: Hyperglycemia, AGEs, Oxidative Stress and Inflammatory Pathways.
    Sahajpal NS; Goel RK; Chaubey A; Aurora R; Jain SK
    Curr Protein Pept Sci; 2019; 20(1):92-110. PubMed ID: 30264677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discussing pathologic mechanisms of Diabetic retinopathy & therapeutic potentials of curcumin and β-glucogallin in the management of Diabetic retinopathy.
    Rohilla M; Rishabh ; Bansal S; Garg A; Dhiman S; Dhankhar S; Saini M; Chauhan S; Alsubaie N; Batiha GE; Albezrah NKA; Singh TG
    Biomed Pharmacother; 2023 Dec; 169():115881. PubMed ID: 37989030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Panax notoginseng saponins alleviate diabetic retinopathy by inhibiting retinal inflammation: Association with the NF-κB signaling pathway.
    Wang Y; Sun X; Xie Y; Du A; Chen M; Lai S; Wei X; Ji L; Wang C
    J Ethnopharmacol; 2024 Jan; 319(Pt 1):117135. PubMed ID: 37689326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiangiogenic cytokines as potential new therapeutic targets for resveratrol in diabetic retinopathy.
    Popescu M; Bogdan C; Pintea A; Rugină D; Ionescu C
    Drug Des Devel Ther; 2018; 12():1985-1996. PubMed ID: 30013318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Inflammation and Therapeutic Concepts in Diabetic Retinopathy-A Short Review.
    Gomułka K; Ruta M
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p75NTR and Its Ligand ProNGF Activate Paracrine Mechanisms Etiological to the Vascular, Inflammatory, and Neurodegenerative Pathologies of Diabetic Retinopathy.
    Barcelona PF; Sitaras N; Galan A; Esquiva G; Jmaeff S; Jian Y; Sarunic MV; Cuenca N; Sapieha P; Saragovi HU
    J Neurosci; 2016 Aug; 36(34):8826-41. PubMed ID: 27559166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.