BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38115088)

  • 1. Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance.
    Zhu H; Hao H; Yu L
    BMC Biol; 2023 Dec; 21(1):294. PubMed ID: 38115088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of microbe-drug associations based on a modified graph attention variational autoencoder and random forest.
    Wang B; Ma F; Du X; Zhang G; Li J
    Front Microbiol; 2024; 15():1394302. PubMed ID: 38881658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes.
    Hua M; Yu S; Liu T; Yang X; Wang H
    Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph2MDA: a multi-modal variational graph embedding model for predicting microbe-drug associations.
    Deng L; Huang Y; Liu X; Liu H
    Bioinformatics; 2022 Jan; 38(4):1118-1125. PubMed ID: 34864873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSAMDA: a computational model for predicting potential microbe-drug associations based on graph attention network and sparse autoencoder.
    Tan Y; Zou J; Kuang L; Wang X; Zeng B; Zhang Z; Wang L
    BMC Bioinformatics; 2022 Nov; 23(1):492. PubMed ID: 36401174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting potential microbe-disease associations with graph attention autoencoder, positive-unlabeled learning, and deep neural network.
    Peng L; Huang L; Tian G; Wu Y; Li G; Cao J; Wang P; Li Z; Duan L
    Front Microbiol; 2023; 14():1244527. PubMed ID: 37789848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Graph Embedding With Adversarial Training Methods.
    Pan S; Hu R; Fung SF; Long G; Jiang J; Zhang C
    IEEE Trans Cybern; 2020 Jun; 50(6):2475-2487. PubMed ID: 31484146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational graph auto-encoders for miRNA-disease association prediction.
    Ding Y; Tian LP; Lei X; Liao B; Wu FX
    Methods; 2021 Aug; 192():25-34. PubMed ID: 32798654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Method Based on Wasserstein Distance and Graph for Cancer Subtype Discovery.
    Cao Q; Zhao J; Wang H; Guan Q; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3499-3510. PubMed ID: 37527304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MGATMDA: Predicting Microbe-Disease Associations via Multi-Component Graph Attention Network.
    Liu D; Liu J; Luo Y; He Q; Deng L
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3578-3585. PubMed ID: 34587092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations.
    Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying microbe-disease association based on graph convolutional attention network: Case study of liver cirrhosis and epilepsy.
    Shi K; Li L; Wang Z; Chen H; Chen Z; Fang S
    Front Neurosci; 2022; 16():1124315. PubMed ID: 36741060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KGNMDA: A Knowledge Graph Neural Network Method for Predicting Microbe-Disease Associations.
    Jiang C; Tang M; Jin S; Huang W; Liu X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1147-1155. PubMed ID: 35724280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LDAEXC: LncRNA-Disease Associations Prediction with Deep Autoencoder and XGBoost Classifier.
    Lu C; Xie M
    Interdiscip Sci; 2023 Sep; 15(3):439-451. PubMed ID: 37308797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MADGAN:A microbe-disease association prediction model based on generative adversarial networks.
    Hu W; Yang X; Wang L; Zhu X
    Front Microbiol; 2023; 14():1159076. PubMed ID: 37032881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graph neural network and multi-data heterogeneous networks for microbe-disease prediction.
    Gong H; You X; Jin M; Meng Y; Zhang H; Yang S; Xu J
    Front Microbiol; 2022; 13():1077111. PubMed ID: 36620040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Variational Graph Autoencoder for Community Detection with Dual Optimization.
    Choong JJ; Liu X; Murata T
    Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.