These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38115420)

  • 1. Numerical simulations of granular dam break: Comparison between discrete element, Navier-Stokes, and thin-layer models.
    Martin HA; Peruzzetto M; Viroulet S; Mangeney A; Lagrée PY; Popinet S; Maury B; Lefebvre-Lepot A; Maday Y; Bouchut F
    Phys Rev E; 2023 Nov; 108(5-1):054902. PubMed ID: 38115420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method.
    Kojic M; Filipovic N; Tsuda A
    Comput Methods Appl Mech Eng; 2013 Jan; 197(6-8):821-833. PubMed ID: 23814322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shallow granular flows.
    Takagi D; McElwaine JN; Huppert HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031306. PubMed ID: 21517493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model for dense granular flows down bumpy inclines.
    Louge MY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061303. PubMed ID: 16241217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the rheology of cohesive granular media.
    Mandal S; Nicolas M; Pouliquen O
    Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8366-8373. PubMed ID: 32241886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosity of cohesive granular flows.
    Macaulay M; Rognon P
    Soft Matter; 2021 Jan; 17(1):165-173. PubMed ID: 33165478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependence of the flow threshold in dense granular materials.
    Liu D; Henann DL
    Soft Matter; 2018 Jun; 14(25):5294-5305. PubMed ID: 29900464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Onset of patterns in an oscillated granular layer: continuum and molecular dynamics simulations.
    Bougie J; Kreft J; Swift JB; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 1):021301. PubMed ID: 15783318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shocks in vertically oscillated granular layers.
    Bougie J; Moon SJ; Swift JB; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051301. PubMed ID: 12513479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory experiment and discrete-element-method simulation of granular-heap flows under vertical vibration.
    Tsuji D; Otsuki M; Katsuragi H
    Phys Rev E; 2019 Jun; 99(6-1):062902. PubMed ID: 31330738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence in Gases.
    McMullen RM; Krygier MC; Torczynski JR; Gallis MA
    Phys Rev Lett; 2022 Mar; 128(11):114501. PubMed ID: 35363027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of subaqueous chute flows of granular materials.
    Varsakelis C; Papalexandris MV
    Eur Phys J E Soft Matter; 2015 May; 38(5):125. PubMed ID: 25985944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Granular flow during hopper discharge.
    Hilton JE; Cleary PW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011307. PubMed ID: 21867164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A constitutive law for dense granular flows.
    Jop P; Forterre Y; Pouliquen O
    Nature; 2006 Jun; 441(7094):727-30. PubMed ID: 16760972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuum simulation of the discharge of the granular silo: a validation test for the μ(I) visco-plastic flow law.
    Staron L; Lagrée PY; Popinet S
    Eur Phys J E Soft Matter; 2014 Jan; 37(1):5. PubMed ID: 24474439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical-mechanical predictions and Navier-Stokes dynamics of two-dimensional flows on a bounded domain.
    Brands H; Maassen SR; Clercx HJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2864-74. PubMed ID: 11970092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlocal modeling of granular flows down inclines.
    Kamrin K; Henann DL
    Soft Matter; 2015 Jan; 11(1):179-85. PubMed ID: 25376561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.