These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38115486)

  • 1. Survival probabilities and first-passage distributions of self-propelled particles in spherical cavities.
    Cherayil BJ
    Phys Rev E; 2023 Nov; 108(5-1):054607. PubMed ID: 38115486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial dynamics of an active Brownian particle.
    Mayer Martins J; Wittkowski R
    Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Derivation of the nonequilibrium generalized Langevin equation from a time-dependent many-body Hamiltonian.
    Netz RR
    Phys Rev E; 2024 Jul; 110(1-1):014123. PubMed ID: 39160956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic derivation of coarse-grained, energy-conserving generalized Langevin dynamics.
    Izvekov S
    J Chem Phys; 2019 Sep; 151(10):104109. PubMed ID: 31521077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brownian dynamics simulations for the narrow escape problem in the unit sphere.
    Srivastava V; Cheviakov A
    Phys Rev E; 2021 Dec; 104(6-1):064113. PubMed ID: 35030881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mori-Zwanzig projection operator formalism: Particle-based coarse-grained dynamics of open classical systems far from equilibrium.
    Izvekov S
    Phys Rev E; 2021 Aug; 104(2-1):024121. PubMed ID: 34525637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active Brownian particles in a circular disk with an absorbing boundary.
    Di Trapani F; Franosch T; Caraglio M
    Phys Rev E; 2023 Jun; 107(6-1):064123. PubMed ID: 37464643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collective motion of binary self-propelled particle mixtures.
    Menzel AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia.
    Nguyen GHP; Wittmann R; Löwen H
    J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory for the dynamics of dense systems of athermal self-propelled particles.
    Szamel G
    Phys Rev E; 2016 Jan; 93(1):012603. PubMed ID: 26871118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuation-dissipation in active matter.
    Burkholder EW; Brady JF
    J Chem Phys; 2019 May; 150(18):184901. PubMed ID: 31091919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoretic motion of a spherical particle in a converging-diverging nanotube.
    Qian S; Wang A; Afonien JK
    J Colloid Interface Sci; 2006 Nov; 303(2):579-92. PubMed ID: 16979648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of self-propelled particles under strong confinement.
    Fily Y; Baskaran A; Hagan MF
    Soft Matter; 2014 Aug; 10(30):5609-17. PubMed ID: 24965311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The multi-dimensional generalized Langevin equation for conformational motion of proteins.
    Lee HS; Ahn SH; Darve EF
    J Chem Phys; 2019 May; 150(17):174113. PubMed ID: 31067888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time asymmetry of the Kramers equation with nonlinear friction: fluctuation-dissipation relation and ratchet effect.
    Sarracino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052124. PubMed ID: 24329231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approximate first passage time distribution for barrier crossing in a double well under fractional Gaussian noise.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2006 Sep; 125(11):114106. PubMed ID: 16999465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium diffusion of active particles bound to a semiflexible polymer network: Simulations and fractional Langevin equation.
    Han HT; Joo S; Sakaue T; Jeon JH
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37428046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derivation of the Langevin Equation from the Microcanonical Ensemble.
    Eichhorn R
    Entropy (Basel); 2024 Mar; 26(4):. PubMed ID: 38667831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional Fokker-Planck equation, solution, and application.
    Barkai E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046118. PubMed ID: 11308923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.