These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38115529)
1. Constructing low-dimensional ordinary differential equations from chaotic time series of high- or infinite-dimensional systems using radial-function-based regression. Tsutsumi N; Nakai K; Saiki Y Phys Rev E; 2023 Nov; 108(5-1):054220. PubMed ID: 38115529 [TBL] [Abstract][Full Text] [Related]
2. Constructing differential equations using only a scalar time-series about continuous time chaotic dynamics. Tsutsumi N; Nakai K; Saiki Y Chaos; 2022 Sep; 32(9):091101. PubMed ID: 36182397 [TBL] [Abstract][Full Text] [Related]
3. Approximating chaotic saddles for delay differential equations. Taylor SR; Campbell SA Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046215. PubMed ID: 17500986 [TBL] [Abstract][Full Text] [Related]
4. Time Series Analysis of the Lecca P; Mura I; Re A; Barker GC; Ihekwaba AE Front Microbiol; 2016; 7():1760. PubMed ID: 27872618 [TBL] [Abstract][Full Text] [Related]
5. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method. Azimi S; Ashtari O; Schneider TM Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314 [TBL] [Abstract][Full Text] [Related]
6. Phase resetting effects for robust cycles between chaotic sets. Ashwin P; Field M; Rucklidge AM; Sturman R Chaos; 2003 Sep; 13(3):973-81. PubMed ID: 12946190 [TBL] [Abstract][Full Text] [Related]
8. Operator differential-algebraic equations with noise arising in fluid dynamics. Altmann R; Levajković T; Mena H Mon Hefte Math; 2017; 182(4):741-780. PubMed ID: 32226140 [TBL] [Abstract][Full Text] [Related]
9. Analysis of cedar pollen time series: no evidence of low-dimensional chaotic behavior. Delaunay JJ; Konishi R; Seymour C Int J Biometeorol; 2006 Jan; 50(3):154-8. PubMed ID: 16208500 [TBL] [Abstract][Full Text] [Related]
10. Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations. Linot AJ; Graham MD Chaos; 2022 Jul; 32(7):073110. PubMed ID: 35907719 [TBL] [Abstract][Full Text] [Related]
11. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation. Rempel EL; Chian AC; Macau EE; Rosa RR Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964 [TBL] [Abstract][Full Text] [Related]
12. Numerical method for parameter inference of systems of nonlinear ordinary differential equations with partial observations. Chen Y; Cheng J; Gupta A; Huang H; Xu S R Soc Open Sci; 2021 Jul; 8(7):210171. PubMed ID: 34350015 [TBL] [Abstract][Full Text] [Related]
13. Model-free forecasting of partially observable spatiotemporally chaotic systems. Gupta V; Li LKB; Chen S; Wan M Neural Netw; 2023 Mar; 160():297-305. PubMed ID: 36716509 [TBL] [Abstract][Full Text] [Related]
14. Simple Equations Method and Non-Linear Differential Equations with Non-Polynomial Non-Linearity. Vitanov NK; Dimitrova ZI Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945930 [TBL] [Abstract][Full Text] [Related]
15. Generation and dynamics analysis of N-scrolls existence in new translation-type chaotic systems. Liu Y; Guo S Chaos; 2016 Nov; 26(11):113114. PubMed ID: 27908006 [TBL] [Abstract][Full Text] [Related]
16. Deterministic Brownian motion generated from differential delay equations. Lei J; Mackey MC Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041105. PubMed ID: 22181085 [TBL] [Abstract][Full Text] [Related]
17. Lorenz-like systems emerging from an integro-differential trajectory equation of a one-dimensional wave-particle entity. Valani RN Chaos; 2022 Feb; 32(2):023129. PubMed ID: 35232028 [TBL] [Abstract][Full Text] [Related]
18. On reducing and finding solutions of nonlinear evolutionary equations via generalized symmetry of ordinary differential equations. Tsyfra I; Rzeszut W Math Biosci Eng; 2022 May; 19(7):6962-6984. PubMed ID: 35730291 [TBL] [Abstract][Full Text] [Related]