These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38116141)

  • 1. Vestibular damage affects the precision and accuracy of navigation in a virtual visual environment.
    Chari DA; Ahmad M; King S; Boutabla A; Fattahi C; Panic AS; Karmali F; Lewis RF
    Brain Commun; 2023; 5(6):fcad345. PubMed ID: 38116141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance in Real World- and Virtual Reality-Based Spatial Navigation Tasks in Patients With Vestibular Dysfunction.
    Biju K; Wei EX; Rebello E; Matthews J; He Q; McNamara TP; Agrawal Y
    Otol Neurotol; 2021 Dec; 42(10):e1524-e1531. PubMed ID: 34766948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Idiothetic signal processing and spatial orientation in patients with unilateral hippocampal sclerosis.
    Anagnostou E; Skarlatou V; Mergner T; Anastasopoulos D
    J Neurophysiol; 2018 Sep; 120(3):1256-1263. PubMed ID: 29897863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vestibular cues improve landmark-based route navigation: A simulated driving study.
    Jabbari Y; Kenney DM; von Mohrenschildt M; Shedden JM
    Mem Cognit; 2021 Nov; 49(8):1633-1644. PubMed ID: 34018119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vision and proprioception make equal contributions to path integration in a novel homing task.
    Chrastil ER; Nicora GL; Huang A
    Cognition; 2019 Nov; 192():103998. PubMed ID: 31228680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vestibular control of entorhinal cortex activity in spatial navigation.
    Jacob PY; Poucet B; Liberge M; Save E; Sargolini F
    Front Integr Neurosci; 2014; 8():38. PubMed ID: 24926239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of older age on visual and self-motion sensory cue integration in navigation.
    Shayman CS; McCracken MK; Finney HC; Katsanevas AM; Fino PC; Stefanucci JK; Creem-Regehr SH
    Exp Brain Res; 2024 Jun; 242(6):1277-1289. PubMed ID: 38548892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibrating space: exploration is important for allothetic and idiothetic navigation.
    Whishaw IQ; Brooks BL
    Hippocampus; 1999; 9(6):659-67. PubMed ID: 10641759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A battery of tests for quantitative examination of idiothetic and allothetic place navigation modes in humans.
    Stepankova K; Pastalkova E; Kalova E; Kalina M; Bures J
    Behav Brain Res; 2003 Dec; 147(1-2):95-105. PubMed ID: 14659575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eye-Movements During Navigation in a Virtual Environment: Sex Differences and Relationship to Sex Hormones.
    Harris T; Hagg J; Pletzer B
    Front Neurosci; 2022; 16():755393. PubMed ID: 35573293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial performance of unilateral vestibular defective patients in nonvisual versus visual navigation.
    Péruch P; Borel L; Gaunet F; Thinus-Blanc G; Magnan J; Lacour M
    J Vestib Res; 1999; 9(1):37-47. PubMed ID: 10334015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereosonic vision: Exploring visual-to-auditory sensory substitution mappings in an immersive virtual reality navigation paradigm.
    Massiceti D; Hicks SL; van Rheede JJ
    PLoS One; 2018; 13(7):e0199389. PubMed ID: 29975734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel apparatus for assessing visual cue-based navigation in rodents.
    Lester AW; Kapellusch AJ; Barnes CA
    J Neurosci Methods; 2020 May; 338():108667. PubMed ID: 32169584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze Behavior During Navigation and Visual Search of an Open-World Virtual Environment.
    Enders LR; Smith RJ; Gordon SM; Ries AJ; Touryan J
    Front Psychol; 2021; 12():681042. PubMed ID: 34434140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination and competition between path integration and landmark navigation in the estimation of heading direction.
    Harootonian SK; Ekstrom AD; Wilson RC
    PLoS Comput Biol; 2022 Feb; 18(2):e1009222. PubMed ID: 35143474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deficits in allothetic and idiothetic spatial behavior in rats with posterior cingulate cortex lesions.
    Whishaw IQ; Maaswinkel H; Gonzalez CL; Kolb B
    Behav Brain Res; 2001 Jan; 118(1):67-76. PubMed ID: 11163635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigation strategies in patients with vestibular loss tested in a virtual reality T-maze.
    Gammeri R; Léonard J; Toupet M; Hautefort C; van Nechel C; Besnard S; Machado ML; Nakul E; Montava M; Lavieille JP; Lopez C
    J Neurol; 2022 Aug; 269(8):4333-4348. PubMed ID: 35306619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable cerebellar activity during spatial navigation and visual memory in bilateral vestibular failure.
    Jandl NM; Sprenger A; Wojak JF; Göttlich M; Münte TF; Krämer UM; Helmchen C
    Neuroscience; 2015 Oct; 305():257-67. PubMed ID: 26255675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets.
    Becker W; Nasios G; Raab S; Jürgens R
    Exp Brain Res; 2002 Jun; 144(4):458-74. PubMed ID: 12037631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.