BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38116437)

  • 1. Enniatin A Analogues as Novel Hsp90 Inhibitors that Modulate Triple-Negative Breast Cancer.
    Serwetnyk MA; Crowley VM; Brackett CM; Carter TR; Elahi A; Kommalapati VK; Chadli A; Blagg BSJ
    ACS Med Chem Lett; 2023 Dec; 14(12):1785-1790. PubMed ID: 38116437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enniatin A inhibits the chaperone Hsp90 and unleashes the immune system against triple-negative breast cancer.
    Eisa NH; Crowley VM; Elahi A; Kommalapati VK; Serwetnyk MA; Llbiyi T; Lu S; Kainth K; Jilani Y; Marasco D; El Andaloussi A; Lee S; Tsai FTF; Rodriguez PC; Munn D; Celis E; Korkaya H; Debbab A; Blagg B; Chadli A
    iScience; 2023 Dec; 26(12):108308. PubMed ID: 38025772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simvastatin functions as a heat shock protein 90 inhibitor against triple-negative breast cancer.
    Kou X; Jiang X; Liu H; Wang X; Sun F; Han J; Fan J; Feng G; Lin Z; Jiang L; Yang Y
    Cancer Sci; 2018 Oct; 109(10):3272-3284. PubMed ID: 30039622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cucurbitacin D Is a Disruptor of the HSP90 Chaperone Machinery.
    Hall JA; Seedarala S; Rice N; Kopel L; Halaweish F; Blagg BS
    J Nat Prod; 2015 Apr; 78(4):873-9. PubMed ID: 25756299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Evaluation of Simplified Cruentaren A Analogues.
    Dou X; Patel BA; D'Amico T; Subramanian C; Cousineau E; Yi Y; Cohen M; Blagg BSJ
    J Org Chem; 2022 Aug; 87(15):9940-9956. PubMed ID: 35894845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition.
    Serwetnyk MA; Blagg BSJ
    Acta Pharm Sin B; 2021 Jun; 11(6):1446-1468. PubMed ID: 34221862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Right Tool for the Job: An Overview of Hsp90 Inhibitors.
    Koren J; Blagg BSJ
    Adv Exp Med Biol; 2020; 1243():135-146. PubMed ID: 32297216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug-mediated targeted disruption of multiple protein activities through functional inhibition of the Hsp90 chaperone complex.
    Stravopodis DJ; Margaritis LH; Voutsinas GE
    Curr Med Chem; 2007; 14(29):3122-38. PubMed ID: 18220746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hsp90 inhibitors: small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation.
    Blagg BS; Kerr TD
    Med Res Rev; 2006 May; 26(3):310-38. PubMed ID: 16385472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrocycles that inhibit the binding between heat shock protein 90 and TPR-containing proteins.
    Ardi VC; Alexander LD; Johnson VA; McAlpine SR
    ACS Chem Biol; 2011 Dec; 6(12):1357-66. PubMed ID: 21950602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Modeling of the Hsp90 Interactions with Cochaperones and Small-Molecule Inhibitors.
    Verkhivker GM
    Methods Mol Biol; 2018; 1709():253-273. PubMed ID: 29177665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinventing Hsp90 Inhibitors: Blocking C-Terminal Binding Events to Hsp90 by Using Dimerized Inhibitors.
    Koay YC; Wahyudi H; McAlpine SR
    Chemistry; 2016 Dec; 22(51):18572-18582. PubMed ID: 27859703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.
    Blacklock K; Verkhivker GM
    PLoS One; 2014; 9(1):e86547. PubMed ID: 24466147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors.
    Powers MV; Workman P
    Endocr Relat Cancer; 2006 Dec; 13 Suppl 1():S125-35. PubMed ID: 17259553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative approaches to Hsp90 modulation for the treatment of cancer.
    Hall JA; Forsberg LK; Blagg BS
    Future Med Chem; 2014 Sep; 6(14):1587-605. PubMed ID: 25367392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterisation of a novel heat shock protein 90 inhibitor ONO4140.
    Eachkoti R; Reddy MV; Lieu YK; Cosenza SC; Reddy EP
    Eur J Cancer; 2014 Jul; 50(11):1982-92. PubMed ID: 24835034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational modification of heat-shock protein 90: impact on chaperone function.
    Scroggins BT; Neckers L
    Expert Opin Drug Discov; 2007 Oct; 2(10):1403-14. PubMed ID: 23484535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small Molecule Inhibitors to Disrupt Protein-protein Interactions of Heat Shock Protein 90 Chaperone Machinery.
    Seo YH
    J Cancer Prev; 2015 Mar; 20(1):5-11. PubMed ID: 25853099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a high-throughput screening cancer cell-based luciferase refolding assay for identifying Hsp90 inhibitors.
    Sadikot T; Swink M; Eskew JD; Brown D; Zhao H; Kusuma BR; Rajewski RA; Blagg BS; Matts RL; Holzbeierlein JM; Vielhauer GA
    Assay Drug Dev Technol; 2013 Oct; 11(8):478-88. PubMed ID: 24127661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning.
    Smith JR; Workman P
    Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.