These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38116437)

  • 21. Phase Ib study of HSP90 inhibitor, onalespib (AT13387), in combination with paclitaxel in patients with advanced triple-negative breast cancer.
    Williams NO; Quiroga D; Johnson C; Brufsky A; Chambers M; Bhattacharya S; Patterson M; Sardesai SD; Stover D; Lustberg M; Noonan AM; Cherian M; Bystry DM; Hill KL; Chen M; Phelps MA; Grever M; Stephens JA; Ramaswamy B; Carson WE; Wesolowski R
    Ther Adv Med Oncol; 2023; 15():17588359231217976. PubMed ID: 38152697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hsp90: an emerging target for breast cancer therapy.
    Beliakoff J; Whitesell L
    Anticancer Drugs; 2004 Aug; 15(7):651-62. PubMed ID: 15269596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Investigation of Hsp90 C-terminal inhibitors containing Amide bioisosteres.
    Blagg B; Amatya E; Subramanian C; Long R; McNamara K; Cohen MS
    ChemMedChem; 2024 Aug; ():e202400418. PubMed ID: 39153203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heat-shock protein 90 inhibitors as antitumor agents: a survey of the literature from 2005 to 2010.
    Messaoudi S; Peyrat JF; Brion JD; Alami M
    Expert Opin Ther Pat; 2011 Oct; 21(10):1501-42. PubMed ID: 21689065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HSP90 inhibitors and cancer: Prospects for use in targeted therapies (Review).
    Li ZN; Luo Y
    Oncol Rep; 2023 Jan; 49(1):. PubMed ID: 36367182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overcoming acquired resistance to HSP90 inhibition by targeting JAK-STAT signalling in triple-negative breast cancer.
    Mumin NH; Drobnitzky N; Patel A; Lourenco LM; Cahill FF; Jiang Y; Kong A; Ryan AJ
    BMC Cancer; 2019 Jan; 19(1):102. PubMed ID: 30678647
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting the Hsp90-Cdc37-client protein interaction to disrupt Hsp90 chaperone machinery.
    Li T; Jiang HL; Tong YG; Lu JJ
    J Hematol Oncol; 2018 Apr; 11(1):59. PubMed ID: 29699578
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of novel Geldanamycin analogue hsp90 alpha-inhibitor in silico for breast cancer therapy.
    Mahanta S; Pilla S; Paul S
    Med Hypotheses; 2013 Sep; 81(3):463-9. PubMed ID: 23860250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulphoxythiocarbamates modify cysteine residues in HSP90 causing degradation of client proteins and inhibition of cancer cell proliferation.
    Zhang Y; Dayalan Naidu S; Samarasinghe K; Van Hecke GC; Pheely A; Boronina TN; Cole RN; Benjamin IJ; Cole PA; Ahn YH; Dinkova-Kostova AT
    Br J Cancer; 2014 Jan; 110(1):71-82. PubMed ID: 24322890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting the HSP90-CDC37-kinase chaperone cycle: A promising therapeutic strategy for cancer.
    Wang L; Zhang Q; You Q
    Med Res Rev; 2022 Jan; 42(1):156-182. PubMed ID: 33846988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of cancer invasion and metastasis by targeting the molecular chaperone heat-shock protein 90.
    Koga F; Kihara K; Neckers L
    Anticancer Res; 2009 Mar; 29(3):797-807. PubMed ID: 19414312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting Hsp90-Cdc37: A Promising Therapeutic Strategy by Inhibiting Hsp90 Chaperone Function.
    Wang L; Li L; Gu K; Xu XL; Sun Y; You QD
    Curr Drug Targets; 2017; 18(13):1572-1585. PubMed ID: 27231111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study.
    Blacklock K; Verkhivker GM
    PLoS One; 2013; 8(8):e71936. PubMed ID: 23977182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling.
    Genest O; Hoskins JR; Kravats AN; Doyle SM; Wickner S
    J Mol Biol; 2015 Dec; 427(24):3877-89. PubMed ID: 26482100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting the Hsp90 C-terminal domain to induce allosteric inhibition and selective client downregulation.
    Goode KM; Petrov DP; Vickman RE; Crist SA; Pascuzzi PE; Ratliff TL; Davisson VJ; Hazbun TR
    Biochim Biophys Acta Gen Subj; 2017 Aug; 1861(8):1992-2006. PubMed ID: 28495207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural and computational biology of the molecular chaperone Hsp90: from understanding molecular mechanisms to computer-based inhibitor design.
    Verkhivker GM; Dixit A; Morra G; Colombo G
    Curr Top Med Chem; 2009; 9(15):1369-85. PubMed ID: 19860735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions.
    Hong DS; Banerji U; Tavana B; George GC; Aaron J; Kurzrock R
    Cancer Treat Rev; 2013 Jun; 39(4):375-87. PubMed ID: 23199899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulation of heat shock protein 90 chaperone function through binding of a novobiocin analog KU-32.
    Chatterjee BK; Jayaraj A; Kumar V; Blagg B; Davis RE; Jayaram B; Deep S; Chaudhuri TK
    J Biol Chem; 2019 Apr; 294(16):6450-6467. PubMed ID: 30792306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cruentaren A binds F1F0 ATP synthase to modulate the Hsp90 protein folding machinery.
    Hall JA; Kusuma BR; Brandt GE; Blagg BS
    ACS Chem Biol; 2014 Apr; 9(4):976-85. PubMed ID: 24450340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibiting protein-protein interactions of Hsp90 as a novel approach for targeting cancer.
    Dutta Gupta S; Bommaka MK; Banerjee A
    Eur J Med Chem; 2019 Sep; 178():48-63. PubMed ID: 31176095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.