These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38116437)
41. Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins: Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes. Verkhivker GM J Mol Biol; 2022 Sep; 434(17):167506. PubMed ID: 35202628 [TBL] [Abstract][Full Text] [Related]
42. Allosteric Mechanism of the Hsp90 Chaperone Interactions with Cochaperones and Client Proteins by Modulating Communication Spines of Coupled Regulatory Switches: Integrative Atomistic Modeling of Hsp90 Signaling in Dynamic Interaction Networks. Astl L; Stetz G; Verkhivker GM J Chem Inf Model; 2020 Jul; 60(7):3616-3631. PubMed ID: 32519853 [TBL] [Abstract][Full Text] [Related]
44. Structure-Activity Relationships of Benzothiazole-Based Hsp90 C-Terminal-Domain Inhibitors. Dernovšek J; Zajec Ž; Durcik M; Mašič LP; Gobec M; Zidar N; Tomašič T Pharmaceutics; 2021 Aug; 13(8):. PubMed ID: 34452244 [TBL] [Abstract][Full Text] [Related]
45. Design, synthesis, and biological evaluation of ring-constrained novobiocin analogues as hsp90 C-terminal inhibitors. Garg G; Zhao H; Blagg BS ACS Med Chem Lett; 2015 Feb; 6(2):204-9. PubMed ID: 25699150 [TBL] [Abstract][Full Text] [Related]
46. Hsp90 inhibitors identified from a library of novobiocin analogues. Yu XM; Shen G; Neckers L; Blake H; Holzbeierlein J; Cronk B; Blagg BS J Am Chem Soc; 2005 Sep; 127(37):12778-9. PubMed ID: 16159253 [TBL] [Abstract][Full Text] [Related]
47. Virtual screening based identification of miltefosine and octenidine as inhibitors of heat shock protein 90. Li L; Yang M; Li C; Liu Y Naunyn Schmiedebergs Arch Pharmacol; 2021 Nov; 394(11):2223-2232. PubMed ID: 34406420 [TBL] [Abstract][Full Text] [Related]
48. Heat shock protein 90 inhibitors as therapeutic agents. Gomez-Monterrey I; Sala M; Musella S; Campiglia P Recent Pat Anticancer Drug Discov; 2012 Sep; 7(3):313-36. PubMed ID: 22338602 [TBL] [Abstract][Full Text] [Related]
49. Hsp90: structure and function. Jackson SE Top Curr Chem; 2013; 328():155-240. PubMed ID: 22955504 [TBL] [Abstract][Full Text] [Related]
50. Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90-Kinase Interactions. Wang M; Shen A; Zhang C; Song Z; Ai J; Liu H; Sun L; Ding J; Geng M; Zhang A J Med Chem; 2016 Jun; 59(12):5563-86. PubMed ID: 26844689 [TBL] [Abstract][Full Text] [Related]
51. Traditional and Novel Mechanisms of Heat Shock Protein 90 (HSP90) Inhibition in Cancer Chemotherapy Including HSP90 Cleavage. Park S; Park JA; Jeon JH; Lee Y Biomol Ther (Seoul); 2019 Sep; 27(5):423-434. PubMed ID: 31113013 [TBL] [Abstract][Full Text] [Related]
52. Current Understanding of HSP90 as a Novel Therapeutic Target: An Emerging Approach for the Treatment of Cancer. Haque A; Alam Q; Alam MZ; Azhar EI; Sait KH; Anfinan N; Mushtaq G; Kamal MA; Rasool M Curr Pharm Des; 2016; 22(20):2947-59. PubMed ID: 27013225 [TBL] [Abstract][Full Text] [Related]
53. Client Proteins and Small Molecule Inhibitors Display Distinct Binding Preferences for Constitutive and Stress-Induced HSP90 Isoforms and Their Conformationally Restricted Mutants. Prince TL; Kijima T; Tatokoro M; Lee S; Tsutsumi S; Yim K; Rivas C; Alarcon S; Schwartz H; Khamit-Kush K; Scroggins BT; Beebe K; Trepel JB; Neckers L PLoS One; 2015; 10(10):e0141786. PubMed ID: 26517842 [TBL] [Abstract][Full Text] [Related]
54. The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action. Wickner S; Nguyen TL; Genest O Annu Rev Microbiol; 2021 Oct; 75():719-739. PubMed ID: 34375543 [TBL] [Abstract][Full Text] [Related]
56. Heat Shock Protein 90 Inhibition in Cancer Drug Discovery: From Chemistry to Futural Clinical Applications. Özgür A; Tutar Y Anticancer Agents Med Chem; 2016; 16(3):280-90. PubMed ID: 26295332 [TBL] [Abstract][Full Text] [Related]
57. Natural compounds as potential Hsp90 inhibitors for breast cancer-Pharmacophore guided molecular modelling studies. Rampogu S; Parate S; Parameswaran S; Park C; Baek A; Son M; Park Y; Park SJ; Lee KW Comput Biol Chem; 2019 Dec; 83():107113. PubMed ID: 31493740 [TBL] [Abstract][Full Text] [Related]
58. Post-translational modifications of Hsp90 and translating the chaperone code. Backe SJ; Sager RA; Woodford MR; Makedon AM; Mollapour M J Biol Chem; 2020 Aug; 295(32):11099-11117. PubMed ID: 32527727 [TBL] [Abstract][Full Text] [Related]
59. Development of machine learning models for the screening of potential HSP90 inhibitors. Khan MI; Park T; Imran MA; Gowda Saralamma VV; Lee DC; Choi J; Baig MH; Dong JJ Front Mol Biosci; 2022; 9():967510. PubMed ID: 36339714 [TBL] [Abstract][Full Text] [Related]
60. The Development of Hsp90β-Selective Inhibitors to Overcome Detriments Associated with Mishra SJ; Liu W; Beebe K; Banerjee M; Kent CN; Munthali V; Koren J; Taylor JA; Neckers LM; Holzbeierlein J; Blagg BSJ J Med Chem; 2021 Feb; 64(3):1545-1557. PubMed ID: 33428418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]