BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 38117181)

  • 1. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production.
    Zhang J; Li F; Liu D; Liu Q; Song H
    Chem Soc Rev; 2024 Feb; 53(3):1375-1446. PubMed ID: 38117181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.
    Zhao J; Li F; Cao Y; Zhang X; Chen T; Song H; Wang Z
    Biotechnol Adv; 2021 Dec; 53():107682. PubMed ID: 33326817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in mechanisms and engineering of electroactive biofilms.
    You Z; Li J; Wang Y; Wu D; Li F; Song H
    Biotechnol Adv; 2023 Sep; 66():108170. PubMed ID: 37148984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Promoting efficiency of microbial extracellular electron transfer by synthetic biology].
    Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):516-534. PubMed ID: 28941349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in interfacial engineering for enhanced microbial extracellular electron transfer.
    Wang YX; Hou N; Liu XL; Mu Y
    Bioresour Technol; 2022 Feb; 345():126562. PubMed ID: 34910968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces.
    Wang R; Li H; Sun J; Zhang L; Jiao J; Wang Q; Liu S
    Adv Mater; 2021 Feb; 33(6):e2004051. PubMed ID: 33325567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial electro-fermentation for synthesis of chemicals and biofuels driven by bi-directional extracellular electron transfer.
    Gong Z; Yu H; Zhang J; Li F; Song H
    Synth Syst Biotechnol; 2020 Dec; 5(4):304-313. PubMed ID: 32995586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface].
    Liu X; Zhang J; Zhang B; Yang C; Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):361-377. PubMed ID: 33645140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facet-engineered hematite boosts microbial electrogenesis by synergy of promoting electroactive biofilm formation and extracellular electron transfer.
    Wen L; Huang L; Wang Y; Yuan Y; Zhou L
    Sci Total Environ; 2022 May; 819():153154. PubMed ID: 35038509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and applications of bidirectional extracellular electron transfer of
    Zang Y; Cao B; Zhao H; Xie B; Ge Y; Liu H; Yi Y
    Environ Sci Process Impacts; 2023 Dec; 25(12):1863-1877. PubMed ID: 37787043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.
    Kracke F; Lai B; Yu S; Krömer JO
    Metab Eng; 2018 Jan; 45():109-120. PubMed ID: 29229581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic engineering for enhanced productivity in bioelectrochemical systems.
    Philipp LA; Edel M; Gescher J
    Adv Appl Microbiol; 2020; 111():1-31. PubMed ID: 32446410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide.
    LaBelle EV; Marshall CW; May HD
    Acc Chem Res; 2020 Jan; 53(1):62-71. PubMed ID: 31809012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exopolysaccharides matrix affects the process of extracellular electron transfer in electroactive biofilm.
    Zhuang Z; Yang G; Zhuang L
    Sci Total Environ; 2022 Feb; 806(Pt 3):150713. PubMed ID: 34606863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined spectroelectrochemical and proteomic characterizations of bidirectional Alcaligenes faecalis-electrode electron transfer.
    Yu L; Yuan Y; Rensing C; Zhou S
    Biosens Bioelectron; 2018 May; 106():21-28. PubMed ID: 29414084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering extracellular electron transfer to promote simultaneous brewing wastewater treatment and chromium reduction.
    Wu D; Zhang B; Shi S; Tang R; Qiao C; Li T; Jia J; Yang M; Si X; Wang Y; Sun X; Xiao D; Li F; Song H
    J Hazard Mater; 2024 Mar; 465():133171. PubMed ID: 38147750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional group surface modifications for enhancing the formation and performance of exoelectrogenic biofilms on the anode of a bioelectrochemical system.
    Li C; Cheng S
    Crit Rev Biotechnol; 2019 Dec; 39(8):1015-1030. PubMed ID: 31496297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overview of electroactive microorganisms and electron transfer mechanisms in microbial electrochemistry.
    Thapa BS; Kim T; Pandit S; Song YE; Afsharian YP; Rahimnejad M; Kim JR; Oh SE
    Bioresour Technol; 2022 Mar; 347():126579. PubMed ID: 34921921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.