These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38117609)
1. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines. Li JM; Shi K; Li AT; Zhang ZJ; Yu HL; Xu JH ChemSusChem; 2024 Mar; 17(6):e202301477. PubMed ID: 38117609 [TBL] [Abstract][Full Text] [Related]
2. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines. Li JM; Shi K; Li AT; Zhang ZJ; Yu HL; Xu JH ChemSusChem; 2024 Mar; 17(6):e202400204. PubMed ID: 38369946 [TBL] [Abstract][Full Text] [Related]
3. Transforming Inert Cycloalkanes into α,ω-Diamines by Designed Enzymatic Cascade Catalysis. Zhang Z; Fang L; Wang F; Deng Y; Jiang Z; Li A Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202215935. PubMed ID: 36840725 [TBL] [Abstract][Full Text] [Related]
4. [Construction of multi-enzyme cascade reactions and its application in the synthesis of bifunctional chemicals]. Li J; Shi K; Zhang Z; Xu J; Yu H Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2158-2189. PubMed ID: 37401588 [TBL] [Abstract][Full Text] [Related]
5. One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6-Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases. Fedorchuk TP; Khusnutdinova AN; Evdokimova E; Flick R; Di Leo R; Stogios P; Savchenko A; Yakunin AF J Am Chem Soc; 2020 Jan; 142(2):1038-1048. PubMed ID: 31886667 [TBL] [Abstract][Full Text] [Related]
6. Construction of an engineered biocatalyst system for the production of medium-chain α,ω-dicarboxylic acids from medium-chain ω-hydroxycarboxylic acids. Kim TH; Kang SH; Park JB; Oh DK Biotechnol Bioeng; 2020 Sep; 117(9):2648-2657. PubMed ID: 32436987 [TBL] [Abstract][Full Text] [Related]
7. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli. van Nuland YM; Eggink G; Weusthuis RA Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesis of aliphatic plastic monomers with amino residues in Park G; Kim YC; Jang M; Park H; Lee HW; Jeon W; Kim BG; Choi KY; Ahn J Front Bioeng Biotechnol; 2022; 10():825576. PubMed ID: 36714625 [No Abstract] [Full Text] [Related]
9. Metabolic engineering for the production of dicarboxylic acids and diamines. Chae TU; Ahn JH; Ko YS; Kim JW; Lee JA; Lee EH; Lee SY Metab Eng; 2020 Mar; 58():2-16. PubMed ID: 30905694 [TBL] [Abstract][Full Text] [Related]
10. Multienzymatic synthesis of nylon monomers from vegetable oils. Lin L; Ledesma-Amaro R; Ji XJ; Huang H Trends Biotechnol; 2023 Feb; 41(2):150-153. PubMed ID: 36180355 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Kim SK; Park YC Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307 [TBL] [Abstract][Full Text] [Related]
12. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids. Bowen CH; Bonin J; Kogler A; Barba-Ostria C; Zhang F ACS Synth Biol; 2016 Mar; 5(3):200-6. PubMed ID: 26669968 [TBL] [Abstract][Full Text] [Related]
13. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids. Craft DL; Madduri KM; Eshoo M; Wilson CR Appl Environ Microbiol; 2003 Oct; 69(10):5983-91. PubMed ID: 14532053 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of the Nylon 12 Monomer, ω-Aminododecanoic Acid with Novel CYP153A, AlkJ, and ω-TA Enzymes. Ahsan MM; Jeon H; P Nadarajan S; Chung T; Yoo HW; Kim BG; Patil MD; Yun H Biotechnol J; 2018 Apr; 13(4):e1700562. PubMed ID: 29247604 [TBL] [Abstract][Full Text] [Related]
15. Adding value to plant oils and fatty acids: Biological transformation of fatty acids into ω-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids. Seo JH; Lee SM; Lee J; Park JB J Biotechnol; 2015 Dec; 216():158-66. PubMed ID: 26546054 [TBL] [Abstract][Full Text] [Related]
16. Increased Production of ω-Hydroxynonanoic Acid and α,ω-Nonanedioic Acid from Olive Oil by a Constructed Biocatalytic System. Kang SH; Kim TH; Park JB; Oh DK J Agric Food Chem; 2020 Sep; 68(35):9488-9495. PubMed ID: 32786834 [TBL] [Abstract][Full Text] [Related]
17. Diamine Biosynthesis: Research Progress and Application Prospects. Wang L; Li G; Deng Y Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978133 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of α,ω-Dicarboxylic Acid Production by the Expression of Xylose Reductase for Refactoring Redox Cofactor Regeneration. Sathesh-Prabu C; Lee SK J Agric Food Chem; 2018 Apr; 66(13):3489-3497. PubMed ID: 29537267 [TBL] [Abstract][Full Text] [Related]
19. High-yield whole cell biosynthesis of Nylon 12 monomer with self-sufficient supply of multiple cofactors. Ge J; Yang X; Yu H; Ye L Metab Eng; 2020 Nov; 62():172-185. PubMed ID: 32927060 [TBL] [Abstract][Full Text] [Related]
20. On the biologic origin of C6-C10-dicarboxylic and C6-C10-omega-1-hydroxy monocarboxylic acids in human and rat with acyl-CoA dehydrogenation deficiencies: in vitro studies on the omega- and omega-1-oxidation of medium-chain (C6-C12) fatty acids in human and rat liver. Gregersen N; Mortensen PB; Kølvraa S Pediatr Res; 1983 Oct; 17(10):828-34. PubMed ID: 6634246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]