These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38117632)

  • 41. Light forces the pace: optical manipulation for biophotonics.
    Stevenson DJ; Gunn-Moore F; Dholakia K
    J Biomed Opt; 2010; 15(4):041503. PubMed ID: 20799781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D mechanical characterization of single cells and small organisms using acoustic manipulation and force microscopy.
    Läubli NF; Burri JT; Marquard J; Vogler H; Mosca G; Vertti-Quintero N; Shamsudhin N; deMello A; Grossniklaus U; Ahmed D; Nelson BJ
    Nat Commun; 2021 May; 12(1):2583. PubMed ID: 33972516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automated manipulation of carbon nanotubes using atomic force microscopy.
    Zhang C; Wu S; Fu X
    J Nanosci Nanotechnol; 2013 Jan; 13(1):598-602. PubMed ID: 23646781
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell Deformation by Single-beam Acoustic Trapping: A Promising Tool for Measurements of Cell Mechanics.
    Hwang JY; Kim J; Park JM; Lee C; Jung H; Lee J; Shung KK
    Sci Rep; 2016 Jun; 6():27238. PubMed ID: 27273365
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a dual joystick-controlled laser trapping and cutting system for optical micromanipulation of chromosomes inside living cells.
    Harsono MS; Zhu Q; Shi LZ; Duquette M; Berns MW
    J Biophotonics; 2013 Feb; 6(2):197-204. PubMed ID: 22517735
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of compact high precision linear piezoelectric stepping positioner with nanometer accuracy and large travel range.
    Kang D; Lee MG; Gweon D
    Rev Sci Instrum; 2007 Jul; 78(7):075112. PubMed ID: 17672798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Geometrically unrestricted, topologically constrained control of liquid crystal defects using simultaneous holonomic magnetic and holographic optical manipulation.
    Varney MC; Jenness NJ; Smalyukh II
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022505. PubMed ID: 25353487
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells.
    Pan H; Mei D; Xu C; Han S; Wang Y
    Lab Chip; 2023 Jan; 23(2):215-228. PubMed ID: 36420975
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In plane manipulation of a dielectric nanobeam with gradient optical forces.
    Favuzzi PA; Bardoux R; Asano T; Kawakami Y; Noda S
    Opt Express; 2013 Dec; 21(24):29129-39. PubMed ID: 24514464
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automated transportation of single cells using robot-tweezer manipulation system.
    Hu S; Sun D
    J Lab Autom; 2011 Aug; 16(4):263-70. PubMed ID: 21764021
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Acoustic assembly of cell spheroids in disposable capillaries.
    Wu Y; Ao Z; Bin Chen ; Muhsen M; Bondesson M; Lu X; Guo F
    Nanotechnology; 2018 Dec; 29(50):504006. PubMed ID: 30264735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical manipulation of aerosol droplets using a holographic dual and single beam trap.
    Brzobohatý O; Šiler M; Ježek J; Jákl P; Zemánek P
    Opt Lett; 2013 Nov; 38(22):4601-4. PubMed ID: 24322084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers.
    Wang Y; Pan H; Mei D; Xu C; Weng W
    Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Soft-Contact Acoustic Microgripper Based on a Controllable Gas-Liquid Interface for Biomicromanipulations.
    Zhou Y; Liu J; Yan J; Guo S; Li T
    Small; 2021 Dec; 17(49):e2104579. PubMed ID: 34738717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Magneto-optical tweezers built around an inverted microscope.
    Claudet C; Bednar J
    Appl Opt; 2005 Jun; 44(17):3454-7. PubMed ID: 16007842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optical trapping and manipulation of live T cells with a low numerical aperture lens.
    Harris J; McConnell G
    Opt Express; 2008 Sep; 16(18):14036-43. PubMed ID: 18773014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rotation of non-spherical micro-particles by amplitude modulation of superimposed orthogonal ultrasonic modes.
    Schwarz T; Petit-Pierre G; Dual J
    J Acoust Soc Am; 2013 Mar; 133(3):1260-8. PubMed ID: 23463999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface acoustic waves enable rotational manipulation of Caenorhabditis elegans.
    Zhang J; Yang S; Chen C; Hartman JH; Huang PH; Wang L; Tian Z; Zhang P; Faulkenberry D; Meyer JN; Huang TJ
    Lab Chip; 2019 Mar; 19(6):984-992. PubMed ID: 30768117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.