These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 3811782)

  • 1. NADPH-dependent antibacterial activity in subcellular fractions of human neutrophils: interaction with granule constituents.
    Sasada M; Kubo A; Nishimura T; Kakita T; Moriguchi T; Uchino H; Ambruso DR; Johnston RB
    Nihon Ketsueki Gakkai Zasshi; 1986 Sep; 49(6):1152-63. PubMed ID: 3811782
    [No Abstract]   [Full Text] [Related]  

  • 2. [Enzyme system and coenzymes involved in the energy metabolism of leukocytes. Function and metabolism of polymorphonuclear neutrophils].
    Frei J; Aellig A; Nessi P
    Ann Biol Clin (Paris); 1975; 33(6):459-64. PubMed ID: 5934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis.
    Johansson A; Jesaitis AJ; Lundqvist H; Magnusson KE; Sjölin C; Karlsson A; Dahlgren C
    Cell Immunol; 1995 Mar; 161(1):61-71. PubMed ID: 7867086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced, radical, and excited state oxygen in leukocyte microbicidal activity.
    Allen RC
    Front Biol; 1979; 48():197-233. PubMed ID: 40833
    [No Abstract]   [Full Text] [Related]  

  • 5. A phosphoprotein of Mr 47,000, defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH:O2 oxidoreductase activity in human neutrophils.
    Bolscher BG; van Zwieten R; Kramer IM; Weening RS; Verhoeven AJ; Roos D
    J Clin Invest; 1989 Mar; 83(3):757-63. PubMed ID: 2537848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay.
    Iverson D; DeChatelet LR; Spitznagel JK; Wang P
    J Clin Invest; 1977 Feb; 59(2):282-90. PubMed ID: 833275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible activation of the neutrophil superoxide generating system by hexachlorocyclohexane: correlation with effects on a subcellular superoxide-generating fraction.
    English D; Schell M; Siakotos A; Gabig TG
    J Immunol; 1986 Jul; 137(1):283-90. PubMed ID: 2423606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes.
    McPhail LC; DeChatelet LR; Shirley PS
    J Clin Invest; 1976 Oct; 58(4):774-80. PubMed ID: 965484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme.
    Bender JG; McPhail LC; Van Epps DE
    J Immunol; 1983 May; 130(5):2316-23. PubMed ID: 6300243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase.
    Higson FK; Durbin L; Pavlotsky N; Tauber AI
    J Immunol; 1985 Jul; 135(1):519-24. PubMed ID: 2987348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of vitamin K on human neutrophil function.
    Gallin JI; Seligmann BE; Cramer EB; Schiffmann E; Fletcher MP
    J Immunol; 1982 Mar; 128(3):1399-408. PubMed ID: 6276468
    [No Abstract]   [Full Text] [Related]  

  • 12. Subcellular localization of the superoxide-forming enzyme in human neutrophils.
    Dewald B; Baggiolini M; Curnutte JT; Babior BM
    J Clin Invest; 1979 Jan; 63(1):21-9. PubMed ID: 216707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NADPH-oxidation activities in subcellular fractions isolated from resting or phagocytozing human polymorphonuclears.
    Auclair C; Torres M; Hakim J; Troube H
    Am J Hematol; 1978; 4(2):113-20. PubMed ID: 27984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock in human neutrophils: superoxide generation is inhibited by a mechanism distinct from heat-denaturation of NADPH oxidase and is protected by heat shock proteins in thermotolerant cells.
    Maridonneau-Parini I; Malawista SE; Stubbe H; Russo-Marie F; Polla BS
    J Cell Physiol; 1993 Jul; 156(1):204-11. PubMed ID: 8391007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of oxygen metabolism in polymorphonuclear leucocytes : activity of soluble and membrane bound NADPH and NADH oxidases.
    Rossi P; Dri P; Berton G; Bellavite P
    Bull Eur Physiopathol Respir; 1981; 17 Suppl():167-74. PubMed ID: 7248568
    [No Abstract]   [Full Text] [Related]  

  • 16. Tissue destruction by neutrophils.
    Weiss SJ
    N Engl J Med; 1989 Feb; 320(6):365-76. PubMed ID: 2536474
    [No Abstract]   [Full Text] [Related]  

  • 17. Deficient flavoprotein component of the NADPH-dependent O2-.-generating oxidase in the neutrophils from three male patients with chronic granulomatous disease.
    Gabig TG; Lefker BA
    J Clin Invest; 1984 Mar; 73(3):701-5. PubMed ID: 6707199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cytochalasin B on the NADPH oxidase activity of human polymorphonuclear leukocytes.
    Tsan MF
    J Reticuloendothel Soc; 1978 Mar; 23(3):205-11. PubMed ID: 650641
    [No Abstract]   [Full Text] [Related]  

  • 19. Bactericidal and metabolic function of polymorphonuclear leukocytes.
    Quie PG; Mills EL
    Pediatrics; 1979 Nov; 64(5 Pt 2 Suppl):719-21. PubMed ID: 228238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical subcellular fractionation of neutrophils from patients with chronic granulomatous disease. Demonstration of the enzyme defect in four cases.
    Segal AW; Peters TJ
    Q J Med; 1978 Apr; 47(186):213-20. PubMed ID: 684156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.