These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38117866)

  • 1. Mechanical intelligence simplifies control in terrestrial limbless locomotion.
    Wang T; Pierce C; Kojouharov V; Chong B; Diaz K; Lu H; Goldman DI
    Sci Robot; 2023 Dec; 8(85):eadi2243. PubMed ID: 38117866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical diffraction reveals the role of passive dynamics in a slithering snake.
    Schiebel PE; Rieser JM; Hubbard AM; Chen L; Rocklin DZ; Goldman DI
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4798-4803. PubMed ID: 30804193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Snakes combine vertical and lateral bending to traverse uneven terrain.
    Fu Q; Astley HC; Li C
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35235918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long Limbless Locomotors Over Land: The Mechanics and Biology of Elongate, Limbless Vertebrate Locomotion.
    Astley HC
    Integr Comp Biol; 2020 Jul; 60(1):134-139. PubMed ID: 32699901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Friction modulation in limbless, three-dimensional gaits and heterogeneous terrains.
    Zhang X; Naughton N; Parthasarathy T; Gazzola M
    Nat Commun; 2021 Oct; 12(1):6076. PubMed ID: 34667170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general locomotion control framework for multi-legged locomotors.
    Chong B; O Aydin Y; Rieser JM; Sartoretti G; Wang T; Whitman J; Kaba A; Aydin E; McFarland C; Diaz Cruz K; Rankin JW; Michel KB; Nicieza A; Hutchinson JR; Choset H; Goldman DI
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35533656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometric phase predicts locomotion performance in undulating living systems across scales.
    Rieser JM; Chong B; Gong C; Astley HC; Schiebel PE; Diaz K; Pierce CJ; Lu H; Hatton RL; Choset H; Goldman DI
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2320517121. PubMed ID: 38848301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigating memory effects during undulatory locomotion on hysteretic materials.
    Schiebel PE; Astley HC; Rieser JM; Agarwal S; Hubicki C; Hubbard AM; Diaz K; Mendelson Iii JR; Kamrin K; Goldman DI
    Elife; 2020 Jun; 9():. PubMed ID: 32578532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous body 3-D reconstruction of limbless animals.
    Fu Q; Mitchel TW; Kim JS; Chirikjian GS; Li C
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33536306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a living soft microrobot through optogenetic locomotion control of
    Dong X; Kheiri S; Lu Y; Xu Z; Zhen M; Liu X
    Sci Robot; 2021 Jun; 6(55):. PubMed ID: 34193562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact feedback helps snake robots propel against uneven terrain using vertical bending.
    Fu Q; Li C
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37433307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conservation rules, their breakdown, and optimality in Caenorhabditis sinusoidal locomotion.
    Karbowski J; Cronin CJ; Seah A; Mendel JE; Cleary D; Sternberg PW
    J Theor Biol; 2006 Oct; 242(3):652-69. PubMed ID: 16759670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards the optimization of passive undulatory locomotion on land: mathematical and physical models.
    Yaqoob B; Dottore ED; Mondini A; Rodella A; Mazzolai B; Pugno NM
    J R Soc Interface; 2023 Aug; 20(205):20230330. PubMed ID: 37553994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes.
    Kano T; Ishiguro A
    Integr Comp Biol; 2020 Jul; 60(1):232-247. PubMed ID: 32215573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral bending and buckling aids biological and robotic earthworm anchoring and locomotion.
    Ozkan-Aydin Y; Liu B; Ferrero AC; Seidel M; Hammond FL; Goldman DI
    Bioinspir Biomim; 2021 Nov; 17(1):. PubMed ID: 34496355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angles and waves: intervertebral joint angles and axial kinematics of limbed lizards, limbless lizards, and snakes.
    Morinaga G; Bergmann PJ
    Zoology (Jena); 2019 Jun; 134():16-26. PubMed ID: 31146904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor transitions in the potential energy landscape-dominated regime.
    Othayoth R; Xuan Q; Wang Y; Li C
    Proc Biol Sci; 2021 Apr; 288(1949):20202734. PubMed ID: 33878929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural Network-Based Autonomous Search Model with Undulatory Locomotion Inspired by
    Chen M; Feng D; Su H; Wang M; Su T
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433423
    [No Abstract]   [Full Text] [Related]  

  • 20. Experiments and theory of undulatory locomotion in a simple structured medium.
    Majmudar T; Keaveny EE; Zhang J; Shelley MJ
    J R Soc Interface; 2012 Aug; 9(73):1809-23. PubMed ID: 22319110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.