These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 38118225)
1. Positioning errors of anatomical landmarks identified by fixed vertices in homologous meshes. Ruescas-Nicolau AV; De Rosario H; Bernabé EP; Juan MC Gait Posture; 2024 Feb; 108():215-221. PubMed ID: 38118225 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of a 3D temporal scanning system for gait analysis: Comparative with a marker-based photogrammetry system. Ruescas Nicolau AV; De Rosario H; Basso Della-Vedova F; Parrilla Bernabé E; Juan MC; López-Pascual J Gait Posture; 2022 Sep; 97():28-34. PubMed ID: 35868094 [TBL] [Abstract][Full Text] [Related]
3. Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry. Kouchi M; Mochimaru M Appl Ergon; 2011 Mar; 42(3):518-27. PubMed ID: 20947062 [TBL] [Abstract][Full Text] [Related]
4. Enhanced anatomical calibration in human movement analysis. Donati M; Camomilla V; Vannozzi G; Cappozzo A Gait Posture; 2007 Jul; 26(2):179-85. PubMed ID: 17531491 [TBL] [Abstract][Full Text] [Related]
5. A Deep Learning Model for Markerless Pose Estimation Based on Keypoint Augmentation: What Factors Influence Errors in Biomechanical Applications? Ruescas-Nicolau AV; Medina-Ripoll E; de Rosario H; Sanchiz Navarro J; Parrilla E; Juan Lizandra MC Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544186 [TBL] [Abstract][Full Text] [Related]
6. Automatic landmark annotation in 3D surface scans of skulls: Methodological proposal and reliability study. Bermejo E; Taniguchi K; Ogawa Y; Martos R; Valsecchi A; Mesejo P; Ibáñez O; Imaizumi K Comput Methods Programs Biomed; 2021 Oct; 210():106380. PubMed ID: 34478914 [TBL] [Abstract][Full Text] [Related]
7. A device-agnostic shape model for automated body composition estimates from 3D optical scans. Tian IY; Wong MC; Kennedy S; Kelly NN; Liu YE; Garber AK; Heymsfield SB; Curless B; Shepherd JA Med Phys; 2022 Oct; 49(10):6395-6409. PubMed ID: 35837761 [TBL] [Abstract][Full Text] [Related]
8. Development and application of portable manual non-contact-type anthropometric instruments for measuring human anatomical longitudinal parameters. Susato SI J Physiol Anthropol; 2011; 30(2):55-67. PubMed ID: 21483177 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of the lower limb bones from digitised anatomical landmarks using statistical shape modelling. Nolte D; Ko ST; Bull AMJ; Kedgley AE Gait Posture; 2020 Mar; 77():269-275. PubMed ID: 32092603 [TBL] [Abstract][Full Text] [Related]
10. [Study on the method of automatically determining maxillary complex landmarks based on non-rigid registration algorithms]. Gao ZX; Wang J; Wen AN; Zhu YJ; Qin QZ; Wang Y; Zhao YJ Zhonghua Kou Qiang Yi Xue Za Zhi; 2023 Jun; 58(6):554-560. PubMed ID: 37272000 [No Abstract] [Full Text] [Related]
11. [Preliminary study on the method of automatically determining facial landmarks based on three-dimensional face template]. Wen AN; Zhu YJ; Zheng SW; Xiao N; Gao ZX; Fu XL; Wang Y; Zhao Y Zhonghua Kou Qiang Yi Xue Za Zhi; 2022 Apr; 57(4):358-365. PubMed ID: 35368162 [No Abstract] [Full Text] [Related]
12. Geometric learning and statistical modeling for surgical outcomes evaluation in craniosynostosis using 3D photogrammetry. Elkhill C; Liu J; Linguraru MG; LeBeau S; Khechoyan D; French B; Porras AR Comput Methods Programs Biomed; 2023 Oct; 240():107689. PubMed ID: 37393741 [TBL] [Abstract][Full Text] [Related]
13. Automatic landmarking as a convenient prerequisite for geometric morphometrics. Validation on cone beam computed tomography (CBCT)- based shape analysis of the nasal complex. Ridel AF; Demeter F; Galland M; L'abbé EN; Vandermeulen D; Oettlé AC Forensic Sci Int; 2020 Jan; 306():110095. PubMed ID: 31841934 [TBL] [Abstract][Full Text] [Related]
14. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates. Donati M; Camomilla V; Vannozzi G; Cappozzo A J Biomech; 2008 Jul; 41(10):2219-26. PubMed ID: 18550066 [TBL] [Abstract][Full Text] [Related]
15. [Automatic determination of mandibular landmarks based on three-dimensional mandibular average model]. Gao ZX; Wang Y; Wen AN; Zhu YJ; Qin QZ; Zhang Y; Wang J; Zhao YJ Beijing Da Xue Xue Bao Yi Xue Ban; 2023 Feb; 55(1):174-180. PubMed ID: 36718708 [TBL] [Abstract][Full Text] [Related]
16. The effect of automated landmark identification on morphometric analyses. Percival CJ; Devine J; Darwin BC; Liu W; van Eede M; Henkelman RM; Hallgrimsson B J Anat; 2019 Jun; 234(6):917-935. PubMed ID: 30901082 [TBL] [Abstract][Full Text] [Related]
17. Accuracy of an automated method of 3D soft tissue landmark detection. Baksi S; Freezer S; Matsumoto T; Dreyer C Eur J Orthod; 2021 Dec; 43(6):622-630. PubMed ID: 33377968 [TBL] [Abstract][Full Text] [Related]
18. Femur shape prediction by multiple regression based on quadric surface fitting. Sholukha V; Chapman T; Salvia P; Moiseev F; Euran F; Rooze M; Van Sint Jan S J Biomech; 2011 Feb; 44(4):712-8. PubMed ID: 21122862 [TBL] [Abstract][Full Text] [Related]
19. Determination of the Whiteside line on femur surface models by fitting high-order polynomial functions to cross-section profiles of the intercondylar fossa. Cerveri P; Marchente M; Manzotti A; Confalonieri N Comput Aided Surg; 2011; 16(2):71-85. PubMed ID: 21322746 [TBL] [Abstract][Full Text] [Related]
20. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets. Daboul A; Ivanovska T; Bülow R; Biffar R; Cardini A PLoS One; 2018; 13(5):e0197675. PubMed ID: 29787586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]