These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38118303)

  • 1. From epidermal cells to functional pores: Understanding stomatal development.
    Falquetto-Gomes P; Silva WJ; Siqueira JA; Araújo WL; Nunes-Nesi A
    J Plant Physiol; 2024 Jan; 292():154163. PubMed ID: 38118303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stomatal development in the context of epidermal tissues.
    Torii KU
    Ann Bot; 2021 Jul; 128(2):137-148. PubMed ID: 33877316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress.
    Agurla S; Gahir S; Munemasa S; Murata Y; Raghavendra AS
    Adv Exp Med Biol; 2018; 1081():215-232. PubMed ID: 30288712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Arabidopsis stomatal development by plastoquinone oxidation.
    Zoulias N; Rowe J; Thomson EE; Dabrowska M; Sutherland H; Degen GE; Johnson MP; Sedelnikova SE; Hulmes GE; Hettema EH; Casson SA
    Curr Biol; 2021 Dec; 31(24):5622-5632.e7. PubMed ID: 34727522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.
    Azoulay-Shemer T; Palomares A; Bagheri A; Israelsson-Nordstrom M; Engineer CB; Bargmann BO; Stephan AB; Schroeder JI
    Plant J; 2015 Aug; 83(4):567-81. PubMed ID: 26096271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.
    Engineer CB; Hashimoto-Sugimoto M; Negi J; Israelsson-Nordström M; Azoulay-Shemer T; Rappel WJ; Iba K; Schroeder JI
    Trends Plant Sci; 2016 Jan; 21(1):16-30. PubMed ID: 26482956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development.
    Chater CCC; Oliver J; Casson S; Gray JE
    New Phytol; 2014 Apr; 202(2):376-391. PubMed ID: 24611444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Membrane Transport System of the Guard Cell and Its Integration for Stomatal Dynamics.
    Jezek M; Blatt MR
    Plant Physiol; 2017 Jun; 174(2):487-519. PubMed ID: 28408539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of the mechanism of stomatal development diversification.
    Doll Y; Koga H; Tsukaya H
    J Exp Bot; 2023 Sep; 74(18):5667-5681. PubMed ID: 37555400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.
    Papanatsiou M; Amtmann A; Blatt MR
    Plant Physiol; 2016 Sep; 172(1):254-63. PubMed ID: 27406168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stomatal development: three steps for cell-type differentiation.
    Torii KU; Kanaoka MM; Pillitteri LJ; Bogenschutz NL
    Plant Signal Behav; 2007 Jul; 2(4):311-3. PubMed ID: 19704632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomics of red-light-induced stomatal opening in Arabidopsis thaliana: Coupling with abscisic acid and jasmonic acid metabolism.
    Zhu M; Geng S; Chakravorty D; Guan Q; Chen S; Assmann SM
    Plant J; 2020 Mar; 101(6):1331-1348. PubMed ID: 31677315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.
    Papanatsiou M; Amtmann A; Blatt MR
    J Exp Bot; 2017 Apr; 68(9):2309-2315. PubMed ID: 28369641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-induced stomatal opening is affected by the guard cell protein kinase APK1b.
    Elhaddad NS; Hunt L; Sloan J; Gray JE
    PLoS One; 2014; 9(5):e97161. PubMed ID: 24828466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental regulation of stomatal development.
    Casson SA; Hetherington AM
    Curr Opin Plant Biol; 2010 Feb; 13(1):90-5. PubMed ID: 19781980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Links between environment and stomatal size through evolutionary time in Proteaceae.
    Jordan GJ; Carpenter RJ; Holland BR; Beeton NJ; Woodhams MD; Brodribb TJ
    Proc Biol Sci; 2020 Jan; 287(1919):20192876. PubMed ID: 31992170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Passive origins of stomatal control in vascular plants.
    Brodribb TJ; McAdam SA
    Science; 2011 Feb; 331(6017):582-5. PubMed ID: 21163966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling.
    Vahisalu T; Kollist H; Wang YF; Nishimura N; Chan WY; Valerio G; Lamminmäki A; Brosché M; Moldau H; Desikan R; Schroeder JI; Kangasjärvi J
    Nature; 2008 Mar; 452(7186):487-91. PubMed ID: 18305484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions?
    Pompelli MF; Martins SC; Celin EF; Ventrella MC; Damatta FM
    Braz J Biol; 2010 Nov; 70(4):1083-8. PubMed ID: 21180918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2017 Oct; 216(1):69-75. PubMed ID: 28833173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.