BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38118345)

  • 1. Gated graph neural networks for identifying contamination sources in water distribution systems.
    Li Z; Liu H; Zhang C; Fu G
    J Environ Manage; 2024 Feb; 351():119806. PubMed ID: 38118345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data.
    Li Z; Liu H; Zhang C; Fu G
    Water Res; 2024 Feb; 250():121018. PubMed ID: 38113592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contamination source identification in water distribution networks using convolutional neural network.
    Sun L; Yan H; Xin K; Tao T
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36786-36797. PubMed ID: 31745764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generative adversarial networks for detecting contamination events in water distribution systems using multi-parameter, multi-site water quality monitoring.
    Li Z; Liu H; Zhang C; Fu G
    Environ Sci Ecotechnol; 2023 Apr; 14():100231. PubMed ID: 36578363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph Laplace Regularization-based pressure sensor placement strategy for leak localization in the water distribution networks under joint hydraulic and topological feature spaces.
    Cheng M; Li J; Wang C; Ye C; Chang Z
    Water Res; 2024 Jun; 257():121666. PubMed ID: 38703543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging hydraulics and graph signal processing: A new perspective to estimate water distribution network pressures.
    Zhou X; Liu S; Xu W; Xin K; Wu Y; Meng F
    Water Res; 2022 Jun; 217():118416. PubMed ID: 35429881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the possible scenarios for the optimal locating of quality sensors in the water distribution networks with uncertain contamination.
    Jafari H; Rajaee T; Nazif S
    J Water Health; 2020 Oct; 18(5):704-721. PubMed ID: 33095194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of topological, empirical and optimization-based approaches for locating quality detection points in water distribution networks.
    Santonastaso GF; Di Nardo A; Creaco E; Musmarra D; Greco R
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33844-33853. PubMed ID: 32851529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep reinforcement learning based valve scheduling for pollution isolation in water distribution network.
    Hu CY; Cai JY; Zeng Z; Yan XS; Gong WY; Wang L
    Math Biosci Eng; 2019 Sep; 17(1):105-121. PubMed ID: 31731342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing.
    Cheng M; Li J
    Water Res; 2023 Aug; 242():120313. PubMed ID: 37451191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient k-means clustering and greedy selection-based reduction of nodal search space for optimization of sensor placement in the water distribution networks.
    Gautam DK; Kotecha P; Subbiah S
    Water Res; 2022 Jul; 220():118666. PubMed ID: 35709596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A convenient and stable graph-based pressure estimation methodology for water distribution networks: Development and field validation.
    Zhou X; Zhang J; Guo S; Liu S; Xin K
    Water Res; 2023 Apr; 233():119747. PubMed ID: 36841165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydraulically informed graph theoretic measure of link criticality for the resilience analysis of water distribution networks.
    Ulusoy AJ; Stoianov I; Chazerain A
    Appl Netw Sci; 2018; 3(1):31. PubMed ID: 30839751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selecting the best location of water quality sensors in water distribution networks by considering the importance of nodes and contaminations using NSGA-III (case study: Zahedan water distribution network, Iran).
    Harif S; Azizyan G; Dehghani Darmian M; Givehchi M
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53229-53252. PubMed ID: 36853532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graph neural network for integrated water network partitioning and dynamic district metered areas.
    Fu M; Rong K; Huang Y; Zhang M; Zheng L; Zheng J; Falah MW; Yaseen ZM
    Sci Rep; 2022 Nov; 12(1):19466. PubMed ID: 36376376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shall we always use hydraulic models? A graph neural network metamodel for water system calibration and uncertainty assessment.
    Zanfei A; Menapace A; Brentan BM; Sitzenfrei R; Herrera M
    Water Res; 2023 Aug; 242():120264. PubMed ID: 37393807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects.
    Yu X; Wu Y; Meng F; Zhou X; Liu S; Huang Y; Wu X
    Water Res; 2024 Apr; 253():121238. PubMed ID: 38350191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Pressure Sensor Deployment for Leak Identification in Water Distribution Networks.
    Yang G; Wang H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.
    Rathi S; Gupta R
    J Environ Sci Eng; 2014 Apr; 56(2):169-78. PubMed ID: 26563063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning-based Algorithm for Water Network Contamination Source Localization.
    Grbčić L; Lučin I; Kranjčević L; Družeta S
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32375289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.