These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38118450)

  • 1. Impact of environmental factors on spider silk properties.
    Hopfe C; Ospina-Jara B; Schulze T; Tischer M; Morales D; Reinhartz V; Esfahani RE; Valderrama C; Pérez-Rigueiro J; Bleidorn C; Feldhaar H; Cabra-García J; Scheibel T
    Curr Biol; 2024 Jan; 34(1):56-67.e5. PubMed ID: 38118450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders.
    Vienneau-Hathaway JM; Brassfield ER; Lane AK; Collin MA; Correa-Garhwal SM; Clarke TH; Schwager EE; Garb JE; Hayashi CY; Ayoub NA
    BMC Evol Biol; 2017 Mar; 17(1):78. PubMed ID: 28288560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential origin in the high performance properties of orb spider dragline silk.
    Blackledge TA; Pérez-Rigueiro J; Plaza GR; Perea B; Navarro A; Guinea GV; Elices M
    Sci Rep; 2012; 2():782. PubMed ID: 23110251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silk structure rather than tensile mechanics explains web performance in the moth-specialized spider, Cyrtarachne.
    Diaz C; Tanikawa A; Miyashita T; Dhinojwala A; Blackledge TA
    J Exp Zool A Ecol Integr Physiol; 2018 Jul; ():. PubMed ID: 29992763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family.
    Hayashi CY; Blackledge TA; Lewis RV
    Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural and biomaterial coevolution in spider orb webs.
    Sensenig A; Agnarsson I; Blackledge TA
    J Evol Biol; 2010 Sep; 23(9):1839-56. PubMed ID: 20629854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.
    Agnarsson I; Kuntner M; Blackledge TA
    PLoS One; 2010 Sep; 5(9):e11234. PubMed ID: 20856804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spider capture silk: performance implications of variation in an exceptional biomaterial.
    Swanson BO; Blackledge TA; Hayashi CY
    J Exp Zool A Ecol Genet Physiol; 2007 Nov; 307(11):654-66. PubMed ID: 17853401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical performance of spider orb webs is tuned for high-speed prey.
    Sensenig AT; Kelly SP; Lorentz KA; Lesher B; Blackledge TA
    J Exp Biol; 2013 Sep; 216(Pt 18):3388-94. PubMed ID: 23966586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Web building and silk properties functionally covary among species of wolf spider.
    Lacava M; Camargo A; Garcia LF; Benamú MA; Santana M; Fang J; Wang X; Blamires SJ
    J Evol Biol; 2018 Jul; 31(7):968-978. PubMed ID: 29658162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damping capacity is evolutionarily conserved in the radial silk of orb-weaving spiders.
    Kelly SP; Sensenig A; Lorentz KA; Blackledge TA
    Zoology (Jena); 2011 Sep; 114(4):233-8. PubMed ID: 21723108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spider orb webs rely on radial threads to absorb prey kinetic energy.
    Sensenig AT; Lorentz KA; Kelly SP; Blackledge TA
    J R Soc Interface; 2012 Aug; 9(73):1880-91. PubMed ID: 22431738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance spider webs: integrating biomechanics, ecology and behaviour.
    Harmer AM; Blackledge TA; Madin JS; Herberstein ME
    J R Soc Interface; 2011 Apr; 8(57):457-71. PubMed ID: 21036911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete gene sequence and mechanical property of the fourth type of major ampullate silk protein.
    Wen R; Wang S; Wang K; Yang D; Zan X; Meng Q
    Acta Biomater; 2023 Jan; 155():282-291. PubMed ID: 36427684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Material properties of evolutionary diverse spider silks described by variation in a single structural parameter.
    Madurga R; Plaza GR; Blackledge TA; Guinea GV; Elices M; Pérez-Rigueiro J
    Sci Rep; 2016 Jan; 6():18991. PubMed ID: 26755434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterial evolution parallels behavioral innovation in the origin of orb-like spider webs.
    Blackledge TA; Kuntner M; Marhabaie M; Leeper TC; Agnarsson I
    Sci Rep; 2012; 2():833. PubMed ID: 23150784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of loading rate on mechanical properties and fracture morphology of spider silk.
    Hudspeth M; Nie X; Chen W; Lewis R
    Biomacromolecules; 2012 Aug; 13(8):2240-6. PubMed ID: 22780301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes.
    Ayoub NA; Garb JE; Tinghitella RM; Collin MA; Hayashi CY
    PLoS One; 2007 Jun; 2(6):e514. PubMed ID: 17565367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meta-analysis reveals materiomic relationships in major ampullate silk across the spider phylogeny.
    Craig HC; Piorkowski D; Nakagawa S; Kasumovic MM; Blamires SJ
    J R Soc Interface; 2020 Sep; 17(170):20200471. PubMed ID: 32993436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing web evolution and spider diversification in the molecular era.
    Blackledge TA; Scharff N; Coddington JA; Szüts T; Wenzel JW; Hayashi CY; Agnarsson I
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5229-34. PubMed ID: 19289848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.