These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38122963)
1. Kinetic characterization of the N-terminal domain of Malonyl-CoA reductase. Cavuzic MT; Waldrop GL Biochim Biophys Acta Proteins Proteom; 2024 Feb; 1872(2):140986. PubMed ID: 38122963 [TBL] [Abstract][Full Text] [Related]
2. Kinetic characterization of the C-terminal domain of Malonyl-CoA reductase. Cavuzic MT; de Sousa AS; Lohman JR; Waldrop GL Biochim Biophys Acta Proteins Proteom; 2024 Sep; 1872(5):141033. PubMed ID: 39019246 [TBL] [Abstract][Full Text] [Related]
3. Malonyl-coenzyme A reductase from Chloroflexus aurantiacus, a key enzyme of the 3-hydroxypropionate cycle for autotrophic CO(2) fixation. Hügler M; Menendez C; Schägger H; Fuchs G J Bacteriol; 2002 May; 184(9):2404-10. PubMed ID: 11948153 [TBL] [Abstract][Full Text] [Related]
4. Cryo-EM structure of bifunctional malonyl-CoA reductase from Chloroflexus aurantiacus reveals a dynamic domain movement for high enzymatic activity. Ahn JW; Kim S; Hong J; Kim KJ Int J Biol Macromol; 2023 Jul; 242(Pt 1):124676. PubMed ID: 37146856 [TBL] [Abstract][Full Text] [Related]
5. Dynamic lid domain of Chloroflexus aurantiacus Malonyl-CoA reductase controls the reaction. Kabasakal BV; Cotton CAR; Murray JW Biochimie; 2024 Apr; 219():12-20. PubMed ID: 37952891 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of a bi-functional malonyl-CoA reductase (MCR) from the photosynthetic green non-sulfur bacterium Zhang X; Xin J; Wang Z; Wu W; Liu Y; Min Z; Xin Y; Liu B; He J; Zhang X; Xu X mBio; 2023 Aug; 14(4):e0323322. PubMed ID: 37278533 [TBL] [Abstract][Full Text] [Related]
7. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement. Liu C; Wang Q; Xian M; Ding Y; Zhao G PLoS One; 2013; 8(9):e75554. PubMed ID: 24073271 [TBL] [Abstract][Full Text] [Related]
8. Malonyl-coenzyme A reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. Alber B; Olinger M; Rieder A; Kockelkorn D; Jobst B; Hügler M; Fuchs G J Bacteriol; 2006 Dec; 188(24):8551-9. PubMed ID: 17041055 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of type II methanotroph, Methylosinus trichosporium OB3b, for production of 3-hydroxypropionic acid from methane via a malonyl-CoA reductase-dependent pathway. Nguyen DTN; Lee OK; Lim C; Lee J; Na JG; Lee EY Metab Eng; 2020 May; 59():142-150. PubMed ID: 32061966 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for a bispecific NADP+ and CoA binding site in an archaeal malonyl-coenzyme A reductase. Demmer U; Warkentin E; Srivastava A; Kockelkorn D; Pötter M; Marx A; Fuchs G; Ermler U J Biol Chem; 2013 Mar; 288(9):6363-70. PubMed ID: 23325803 [TBL] [Abstract][Full Text] [Related]
11. Structural insight into bi-functional malonyl-CoA reductase. Son HF; Kim S; Seo H; Hong J; Lee D; Jin KS; Park S; Kim KJ Environ Microbiol; 2020 Feb; 22(2):752-765. PubMed ID: 31814251 [TBL] [Abstract][Full Text] [Related]
12. Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. Rathnasingh C; Raj SM; Lee Y; Catherine C; Ashok S; Park S J Biotechnol; 2012 Feb; 157(4):633-40. PubMed ID: 21723339 [TBL] [Abstract][Full Text] [Related]
13. Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl-coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in Sulfolobales. Kockelkorn D; Fuchs G J Bacteriol; 2009 Oct; 191(20):6352-62. PubMed ID: 19684143 [TBL] [Abstract][Full Text] [Related]
14. Enhancing 3-hydroxypropionic acid production in combination with sugar supply engineering by cell surface-display and metabolic engineering of Schizosaccharomyces pombe. Takayama S; Ozaki A; Konishi R; Otomo C; Kishida M; Hirata Y; Matsumoto T; Tanaka T; Kondo A Microb Cell Fact; 2018 Nov; 17(1):176. PubMed ID: 30424766 [TBL] [Abstract][Full Text] [Related]
15. Coupled synthetic pathways improve the production of 3-hydroxypropionic acid in recombinant Zhou D; Quiroga-Sánchez DL; Zhang X; Chang Y; Luo H Biotechnol Notes; 2022; 3():25-31. PubMed ID: 39416444 [TBL] [Abstract][Full Text] [Related]
16. Fatty acid synthetase. A steady state kinetic analysis of the reaction catalyzed by the enzyme from pigeon liver. Katiyar SS; Cleland WW; Porter JW J Biol Chem; 1975 Apr; 250(7):2709-17. PubMed ID: 235526 [TBL] [Abstract][Full Text] [Related]
17. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
18. Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Chen Y; Bao J; Kim IK; Siewers V; Nielsen J Metab Eng; 2014 Mar; 22():104-9. PubMed ID: 24502850 [TBL] [Abstract][Full Text] [Related]
19. Kinetic studies of the fatty acid synthetase multienzyme complex from Euglena gracilis variety bacillaris. Walker TA; Jonak ZL; Worsham LM; Ernst-Fonberg ML Biochem J; 1981 Nov; 199(2):383-92. PubMed ID: 6803763 [TBL] [Abstract][Full Text] [Related]
20. Kinetic and chemical mechanisms of the fabG-encoded Streptococcus pneumoniae beta-ketoacyl-ACP reductase. Patel MP; Liu WS; West J; Tew D; Meek TD; Thrall SH Biochemistry; 2005 Dec; 44(50):16753-65. PubMed ID: 16342966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]