These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38123113)
1. Spatiotemporal dynamics and modeling of thiacloprid in paddy multimedia systems with the effect of wetting-drying cycles. Cheng H; Xu H; Guo M; Zhu T; Cai W; Miao L; Ji S; Tang G; Liu X Environ Pollut; 2024 Feb; 343():123187. PubMed ID: 38123113 [TBL] [Abstract][Full Text] [Related]
2. Effect of moisture condition on the immobilization of Cd in red paddy soil using passivators. Huang B; Li Z; Li D; Yuan Z; Nie X; Huang J; Zhou Y Environ Technol; 2019 Aug; 40(20):2705-2714. PubMed ID: 29513152 [TBL] [Abstract][Full Text] [Related]
3. Effect of acid-modified biochar coupled with alternate wetting and drying on P leaching, soil P retention and plant P uptake in paddy fields. Materu ST; Chen T; Liu C; Chi D; Jun M J Environ Manage; 2024 Jan; 350():119603. PubMed ID: 38000278 [TBL] [Abstract][Full Text] [Related]
4. Biochar reduced Chinese chive (Allium tuberosum) uptake and dissipation of thiamethoxam in an agricultural soil. You X; Jiang H; Zhao M; Suo F; Zhang C; Zheng H; Sun K; Zhang G; Li F; Li Y J Hazard Mater; 2020 May; 390():121749. PubMed ID: 31818655 [TBL] [Abstract][Full Text] [Related]
5. Nitrogen loss via runoff and leaching from paddy fields with the proportion of controlled-release urea and conventional urea rates under alternate wetting and drying irrigation. Qi D; Zhu J; Wang X Environ Sci Pollut Res Int; 2023 May; 30(22):61741-61752. PubMed ID: 36934189 [TBL] [Abstract][Full Text] [Related]
6. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Xiao W; Ye X; Yang X; Li T; Zhao S; Zhang Q Ecotoxicol Environ Saf; 2015 Mar; 113():439-45. PubMed ID: 25546832 [TBL] [Abstract][Full Text] [Related]
7. Combined remediation effects of biochar and organic fertilizer on immobilization and dissipation of neonicotinoids in soils. Cheng H; Tang G; Wang S; Rinklebe J; Zhu T; Cheng L; Feng S Environ Int; 2022 Nov; 169():107500. PubMed ID: 36088871 [TBL] [Abstract][Full Text] [Related]
8. Copper stimulates neonicotinoid insecticide thiacloprid degradation by Ensifer adhaerens TMX-23. Sun S; Fan Z; Zhao J; Dai Z; Zhao Y; Dai Y J Appl Microbiol; 2021 Dec; 131(6):2838-2848. PubMed ID: 34075672 [TBL] [Abstract][Full Text] [Related]
9. Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation. Whelan MJ; Kim J Integr Environ Assess Manag; 2022 May; 18(3):599-621. PubMed ID: 34375022 [TBL] [Abstract][Full Text] [Related]
10. Biochars change the sorption and degradation of thiacloprid in soil: Insights into chemical and biological mechanisms. Zhang P; Sun H; Min L; Ren C Environ Pollut; 2018 May; 236():158-167. PubMed ID: 29414336 [TBL] [Abstract][Full Text] [Related]
11. The impact of alternate wetting and drying and continuous flooding on antimony speciation and uptake in a soil-rice system. Wu T; Cui X; Ata-Ul-Karim ST; Cui P; Liu C; Fan T; Sun Q; Gong H; Zhou D; Wang Y Chemosphere; 2022 Jun; 297():134147. PubMed ID: 35240148 [TBL] [Abstract][Full Text] [Related]
12. Using gridded multimedia model to simulate spatial fate of Benzo[α]pyrene on regional scale. Liu S; Lu Y; Wang T; Xie S; Jones KC; Sweetman AJ Environ Int; 2014 Feb; 63():53-63. PubMed ID: 24252323 [TBL] [Abstract][Full Text] [Related]
13. [Response of Organic Carbon Mineralization to Nitrogen Addition in Micro-aerobic and Anaerobic Layers of Paddy Soil]. Mao WQ; Xia YH; Ma C; Zhu GX; Wang ZC; Tu Q; Chen XB; Wu JS; Su YR Huan Jing Ke Xue; 2023 Nov; 44(11):6248-6256. PubMed ID: 37973107 [TBL] [Abstract][Full Text] [Related]
14. [Effects of Water Management on Cadmium Accumulation by Rice ( Zhang YT; Tian YB; Huang DY; Zhang Q; Xu C; Zhu HH; Zhu QH Huan Jing Ke Xue; 2021 May; 42(5):2512-2521. PubMed ID: 33884822 [TBL] [Abstract][Full Text] [Related]
15. Fate of selected neonicotinoid insecticides in soil-water systems: Current state of the art and knowledge gaps. Pietrzak D; Kania J; Kmiecik E; Malina G; Wątor K Chemosphere; 2020 Sep; 255():126981. PubMed ID: 32408130 [TBL] [Abstract][Full Text] [Related]
16. Alternate wetting and drying water management can reduce phosphorus availability under lowland rice cultivation irrespective of nitrogen level. Adhikary PP; Mohanty S; Rautaray SK; Manikandan N; Mishra A Environ Monit Assess; 2023 Nov; 195(12):1420. PubMed ID: 37932575 [TBL] [Abstract][Full Text] [Related]
17. Monitoring of Neonicotinoid Pesticides in Water-Soil Systems Along the Agro-Landscapes of the Cauvery Delta Region, South India. Menon M; Mohanraj R; Sujata W Bull Environ Contam Toxicol; 2021 Jun; 106(6):1065-1070. PubMed ID: 33877372 [TBL] [Abstract][Full Text] [Related]
18. [Characteristics of Paddy Soil Organic Carbon Mineralization and Influencing Factors Under Different Water Conditions and Microbial Biomass Levels]. Liu Q; Li YH; Li Z; Wei XM; Zhu ZK; Wu JS; Ge TD Huan Jing Ke Xue; 2021 May; 42(5):2440-2448. PubMed ID: 33884815 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the fate and distribution of methoxyfenozide in a water-plant-fish-sediment microcosm using a multimedia fugacity model. Chen Y; Liu X; Dong F; Xu J; Wu X; Zheng Y Sci Total Environ; 2021 Feb; 755(Pt 1):142482. PubMed ID: 33011597 [TBL] [Abstract][Full Text] [Related]
20. Effect of wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles. Guo M; Tong H; Cai D; Zhang W; Yuan P; Shen Y; Peng C J Hazard Mater; 2022 Aug; 436():129119. PubMed ID: 35596994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]