These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38123113)
21. Influence of rice varieties, organic manure and water management on greenhouse gas emissions from paddy rice soils. Win EP; Win KK; Bellingrath-Kimura SD; Oo AZ PLoS One; 2021; 16(6):e0253755. PubMed ID: 34191848 [TBL] [Abstract][Full Text] [Related]
22. Effects of water management and cultivar on carbon dynamics, plant productivity and biomass allocation in European rice systems. Oliver V; Cochrane N; Magnusson J; Brachi E; Monaco S; Volante A; Courtois B; Vale G; Price A; Teh YA Sci Total Environ; 2019 Oct; 685():1139-1151. PubMed ID: 31390704 [TBL] [Abstract][Full Text] [Related]
23. Release of cadmium in contaminated paddy soil amended with NPK fertilizer and lime under water management. Han XQ; Xiao XY; Guo ZH; Xie YH; Zhu HW; Peng C; Liang YQ Ecotoxicol Environ Saf; 2018 Sep; 159():38-45. PubMed ID: 29730407 [TBL] [Abstract][Full Text] [Related]
24. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model. Liu S; Lu Y; Xie S; Wang T; Jones KC; Sweetman AJ Environ Int; 2015 Dec; 85():15-26. PubMed ID: 26298835 [TBL] [Abstract][Full Text] [Related]
25. [Effects of Water and Fertilization Management on CH Li JQ; Shao XH; Gou GL; Deng YX; Tan SM; Xu WX; Yang Q; Liu WJ; Wu YZ; Meng L; Tang SR Huan Jing Ke Xue; 2021 Jul; 42(7):3458-3471. PubMed ID: 34212673 [TBL] [Abstract][Full Text] [Related]
26. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation. Yang S; Xiao YN; Xu J Environ Sci Pollut Res Int; 2018 Apr; 25(10):9958-9968. PubMed ID: 29374862 [TBL] [Abstract][Full Text] [Related]
27. Batch equilibrium experiments and modeling reveal weak temperature dependence of cyclic volatile methylsiloxane sorption in soil/sediment organic carbon-water systems. Kozerski GE; Kim J; Durham JA; Townsend B Sci Total Environ; 2024 Sep; 942():173541. PubMed ID: 38802002 [TBL] [Abstract][Full Text] [Related]
28. Effects of biochar addition on the NEE and soil organic carbon content of paddy fields under water-saving irrigation. Yang S; Sun X; Ding J; Jiang Z; Xu J Environ Sci Pollut Res Int; 2019 Mar; 26(8):8303-8311. PubMed ID: 30706261 [TBL] [Abstract][Full Text] [Related]
29. [Input and Distribution of Photosynthesized Carbon in Soil-Rice System Affected by Water Management and Nitrogen Fertilization]. Wang TT; Zhu ZK; Zhu HH; Tang ZZ; Pang J; Li BZ; Su YR; Ge TD; Wu JS Huan Jing Ke Xue; 2017 Mar; 38(3):1227-1234. PubMed ID: 29965598 [TBL] [Abstract][Full Text] [Related]
30. Rice husk and husk biochar soil amendments store soil carbon while water management controls dissolved organic matter chemistry in well-weathered soil. Linam F; Limmer MA; Ebling AM; Seyfferth AL J Environ Manage; 2023 Aug; 339():117936. PubMed ID: 37068400 [TBL] [Abstract][Full Text] [Related]
31. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Zhang P; Ren C; Sun H; Min L Sci Total Environ; 2018 Feb; 615():59-69. PubMed ID: 28968584 [TBL] [Abstract][Full Text] [Related]
32. Effect of straw return on soil respiration and NEE of paddy fields under water-saving irrigation. Yang S; Xiao Y; Xu J; Liu X PLoS One; 2018; 13(10):e0204597. PubMed ID: 30325941 [TBL] [Abstract][Full Text] [Related]
33. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Xiao W; Ye X; Zhu Z; Zhang Q; Zhao S; Chen D; Gao N; Hu J Ecotoxicol Environ Saf; 2021 Jan; 208():111506. PubMed ID: 33120269 [TBL] [Abstract][Full Text] [Related]
34. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ye X; Li H; Zhang L; Chai R; Tu R; Gao H Ecotoxicol Environ Saf; 2018 Jan; 147():708-714. PubMed ID: 28938141 [TBL] [Abstract][Full Text] [Related]
35. The degradation dynamics and rapid detection of thiacloprid and its degradation products in water and soil by UHPLC-QTOF-MS. Chen K; Liu X; Wu X; Xu J; Dong F; Zheng Y Chemosphere; 2021 Jan; 263():127960. PubMed ID: 33297023 [TBL] [Abstract][Full Text] [Related]
36. Comprehensive improvement of soil quality and rice yield by flooding-midseason drying-flooding. He J; Liu T; Wang W; Wu X; Wang J; Yan W Appl Microbiol Biotechnol; 2022 Nov; 106(21):7347-7359. PubMed ID: 36167920 [TBL] [Abstract][Full Text] [Related]
37. Diverse effects of wetting and drying cycles on soil aggregation: Implications on pesticide leaching. Hochman D; Dor M; Mishael Y Chemosphere; 2021 Jan; 263():127910. PubMed ID: 33297009 [TBL] [Abstract][Full Text] [Related]
38. Inverse modeling of laboratory experiment to assess parameter transferability of pesticide environmental fate into outdoor experiments under paddy test systems. Kondo K; Wakasone Y; Iijima K; Ohyama K Pest Manag Sci; 2020 Aug; 76(8):2768-2780. PubMed ID: 32202059 [TBL] [Abstract][Full Text] [Related]
39. Fate and transport of ten plant protection products of emerging concern in a coastal lagoon: Application and evaluation of a multimedia level III fugacity model. Calgaro L; Giubilato E; Lamon L; Semenzin E; Marcomini A Environ Res; 2024 Dec; 263(Pt 1):120047. PubMed ID: 39313173 [TBL] [Abstract][Full Text] [Related]
40. Immobilization remediation of Cd-polluted soil with different water condition. Li J; Xu Y J Environ Manage; 2017 May; 193():607-612. PubMed ID: 28259470 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]