Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38123254)

  • 1. End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study.
    Jiang X; Hoffmeister M; Brenner H; Muti HS; Yuan T; Foersch S; West NP; Brobeil A; Jonnagaddala J; Hawkins N; Ward RL; Brinker TJ; Saldanha OL; Ke J; Müller W; Grabsch HI; Quirke P; Truhn D; Kather JN
    Lancet Digit Health; 2024 Jan; 6(1):e33-e43. PubMed ID: 38123254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study.
    Veldhuizen GP; Röcken C; Behrens HM; Cifci D; Muti HS; Yoshikawa T; Arai T; Oshima T; Tan P; Ebert MP; Pearson AT; Calderaro J; Grabsch HI; Kather JN
    Gastric Cancer; 2023 Sep; 26(5):708-720. PubMed ID: 37269416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.
    Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N
    PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computed tomography-based multitask deep learning model for predicting tumour stroma ratio and treatment outcomes in patients with colorectal cancer: a multicentre cohort study.
    Cui Y; Zhao K; Meng X; Mao Y; Han C; Shi Z; Yang X; Tong T; Wu L; Liu Z
    Int J Surg; 2024 May; 110(5):2845-2854. PubMed ID: 38348900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study.
    Skrede OJ; De Raedt S; Kleppe A; Hveem TS; Liestøl K; Maddison J; Askautrud HA; Pradhan M; Nesheim JA; Albregtsen F; Farstad IN; Domingo E; Church DN; Nesbakken A; Shepherd NA; Tomlinson I; Kerr R; Novelli M; Kerr DJ; Danielsen HE
    Lancet; 2020 Feb; 395(10221):350-360. PubMed ID: 32007170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.
    Zhao K; Li Z; Yao S; Wang Y; Wu X; Xu Z; Wu L; Huang Y; Liang C; Liu Z
    EBioMedicine; 2020 Nov; 61():103054. PubMed ID: 33039706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas.
    Kim H; Goo JM; Lee KH; Kim YT; Park CM
    Radiology; 2020 Jul; 296(1):216-224. PubMed ID: 32396042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study.
    Kleppe A; Skrede OJ; De Raedt S; Hveem TS; Askautrud HA; Jacobsen JE; Church DN; Nesbakken A; Shepherd NA; Novelli M; Kerr R; Liestøl K; Kerr DJ; Danielsen HE
    Lancet Oncol; 2022 Sep; 23(9):1221-1232. PubMed ID: 35964620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study.
    Jiang Y; Liang X; Han Z; Wang W; Xi S; Li T; Chen C; Yuan Q; Li N; Yu J; Xie Y; Xu Y; Zhou Z; Poultsides GA; Li G; Li R
    Lancet Digit Health; 2021 Jun; 3(6):e371-e382. PubMed ID: 34045003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidemiological trends and novel prognostic evaluation approaches of patients with stage II-IV colorectal neuroendocrine neoplasms: A population-based study with external validation.
    Zhao F; Huang L; Wang Z; Wei F; Xiao T; Liu Q
    Front Endocrinol (Lausanne); 2023; 14():1061187. PubMed ID: 36817582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting 5-year recurrence risk in colorectal cancer: development and validation of a histology-based deep learning approach.
    Xiao H; Weng Z; Sun K; Shen J; Lin J; Chen S; Li B; Shi Y; Kuang M; Song X; Weng W; Peng S
    Br J Cancer; 2024 Apr; 130(6):951-960. PubMed ID: 38245662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer.
    Sharma A; Weitz P; Wang Y; Liu B; Vallon-Christersson J; Hartman J; Rantalainen M
    Breast Cancer Res; 2024 Jan; 26(1):17. PubMed ID: 38287342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study.
    Kers J; Bülow RD; Klinkhammer BM; Breimer GE; Fontana F; Abiola AA; Hofstraat R; Corthals GL; Peters-Sengers H; Djudjaj S; von Stillfried S; Hölscher DL; Pieters TT; van Zuilen AD; Bemelman FJ; Nurmohamed AS; Naesens M; Roelofs JJTH; Florquin S; Floege J; Nguyen TQ; Kather JN; Boor P
    Lancet Digit Health; 2022 Jan; 4(1):e18-e26. PubMed ID: 34794930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From slides to insights: Harnessing deep learning for prognostic survival prediction in human colorectal cancer histology.
    Verma J; Sandhu A; Popli R; Kumar R; Khullar V; Kansal I; Sharma A; Garg K; Kashyap N; Aurangzeb K
    Open Life Sci; 2023; 18(1):20220777. PubMed ID: 38152577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts.
    Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T
    Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate diagnosis and prognosis prediction of gastric cancer using deep learning on digital pathological images: A retrospective multicentre study.
    Huang B; Tian S; Zhan N; Ma J; Huang Z; Zhang C; Zhang H; Ming F; Liao F; Ji M; Zhang J; Liu Y; He P; Deng B; Hu J; Dong W
    EBioMedicine; 2021 Nov; 73():103631. PubMed ID: 34678610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a novel prognostic score to predict survival in patients with metastatic colorectal cancer: the metastatic colorectal cancer score (mCCS).
    Marschner N; Frank M; Vach W; Ladda E; Karcher A; Winter S; Jänicke M; Trarbach T
    Colorectal Dis; 2019 Jul; 21(7):816-826. PubMed ID: 30834622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A retrospective analysis using deep-learning models for prediction of survival outcome and benefit of adjuvant chemotherapy in stage II/III colorectal cancer.
    Li X; Jonnagaddala J; Yang S; Zhang H; Xu XS
    J Cancer Res Clin Oncol; 2022 Aug; 148(8):1955-1963. PubMed ID: 35332389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved breast cancer histological grading using deep learning.
    Wang Y; Acs B; Robertson S; Liu B; Solorzano L; Wählby C; Hartman J; Rantalainen M
    Ann Oncol; 2022 Jan; 33(1):89-98. PubMed ID: 34756513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.