These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38123254)

  • 1. End-to-end prognostication in colorectal cancer by deep learning: a retrospective, multicentre study.
    Jiang X; Hoffmeister M; Brenner H; Muti HS; Yuan T; Foersch S; West NP; Brobeil A; Jonnagaddala J; Hawkins N; Ward RL; Brinker TJ; Saldanha OL; Ke J; Müller W; Grabsch HI; Quirke P; Truhn D; Kather JN
    Lancet Digit Health; 2024 Jan; 6(1):e33-e43. PubMed ID: 38123254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based subtyping of gastric cancer histology predicts clinical outcome: a multi-institutional retrospective study.
    Veldhuizen GP; Röcken C; Behrens HM; Cifci D; Muti HS; Yoshikawa T; Arai T; Oshima T; Tan P; Ebert MP; Pearson AT; Calderaro J; Grabsch HI; Kather JN
    Gastric Cancer; 2023 Sep; 26(5):708-720. PubMed ID: 37269416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computed tomography-based multitask deep learning model for predicting tumour stroma ratio and treatment outcomes in patients with colorectal cancer: a multicentre cohort study.
    Cui Y; Zhao K; Meng X; Mao Y; Han C; Shi Z; Yang X; Tong T; Wu L; Liu Z
    Int J Surg; 2024 May; 110(5):2845-2854. PubMed ID: 38348900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study.
    Kather JN; Krisam J; Charoentong P; Luedde T; Herpel E; Weis CA; Gaiser T; Marx A; Valous NA; Ferber D; Jansen L; Reyes-Aldasoro CC; Zörnig I; Jäger D; Brenner H; Chang-Claude J; Hoffmeister M; Halama N
    PLoS Med; 2019 Jan; 16(1):e1002730. PubMed ID: 30677016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning for prediction of colorectal cancer outcome: a discovery and validation study.
    Skrede OJ; De Raedt S; Kleppe A; Hveem TS; Liestøl K; Maddison J; Askautrud HA; Pradhan M; Nesheim JA; Albregtsen F; Farstad IN; Domingo E; Church DN; Nesbakken A; Shepherd NA; Tomlinson I; Kerr R; Novelli M; Kerr DJ; Danielsen HE
    Lancet; 2020 Feb; 395(10221):350-360. PubMed ID: 32007170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer.
    Zhao K; Li Z; Yao S; Wang Y; Wu X; Xu Z; Wu L; Huang Y; Liang C; Liu Z
    EBioMedicine; 2020 Nov; 61():103054. PubMed ID: 33039706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas.
    Kim H; Goo JM; Lee KH; Kim YT; Park CM
    Radiology; 2020 Jul; 296(1):216-224. PubMed ID: 32396042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A clinical decision support system optimising adjuvant chemotherapy for colorectal cancers by integrating deep learning and pathological staging markers: a development and validation study.
    Kleppe A; Skrede OJ; De Raedt S; Hveem TS; Askautrud HA; Jacobsen JE; Church DN; Nesbakken A; Shepherd NA; Novelli M; Kerr R; Liestøl K; Kerr DJ; Danielsen HE
    Lancet Oncol; 2022 Sep; 23(9):1221-1232. PubMed ID: 35964620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epidemiological trends and novel prognostic evaluation approaches of patients with stage II-IV colorectal neuroendocrine neoplasms: A population-based study with external validation.
    Zhao F; Huang L; Wang Z; Wei F; Xiao T; Liu Q
    Front Endocrinol (Lausanne); 2023; 14():1061187. PubMed ID: 36817582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study.
    Jiang Y; Liang X; Han Z; Wang W; Xi S; Li T; Chen C; Yuan Q; Li N; Yu J; Xie Y; Xu Y; Zhou Z; Poultsides GA; Li G; Li R
    Lancet Digit Health; 2021 Jun; 3(6):e371-e382. PubMed ID: 34045003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting 5-year recurrence risk in colorectal cancer: development and validation of a histology-based deep learning approach.
    Xiao H; Weng Z; Sun K; Shen J; Lin J; Chen S; Li B; Shi Y; Kuang M; Song X; Weng W; Peng S
    Br J Cancer; 2024 Apr; 130(6):951-960. PubMed ID: 38245662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and prognostic validation of a three-level NHG-like deep learning-based model for histological grading of breast cancer.
    Sharma A; Weitz P; Wang Y; Liu B; Vallon-Christersson J; Hartman J; Rantalainen M
    Breast Cancer Res; 2024 Jan; 26(1):17. PubMed ID: 38287342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From slides to insights: Harnessing deep learning for prognostic survival prediction in human colorectal cancer histology.
    Verma J; Sandhu A; Popli R; Kumar R; Khullar V; Kansal I; Sharma A; Garg K; Kashyap N; Aurangzeb K
    Open Life Sci; 2023; 18(1):20220777. PubMed ID: 38152577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study.
    Muti HS; Heij LR; Keller G; Kohlruss M; Langer R; Dislich B; Cheong JH; Kim YW; Kim H; Kook MC; Cunningham D; Allum WH; Langley RE; Nankivell MG; Quirke P; Hayden JD; West NP; Irvine AJ; Yoshikawa T; Oshima T; Huss R; Grosser B; Roviello F; d'Ignazio A; Quaas A; Alakus H; Tan X; Pearson AT; Luedde T; Ebert MP; Jäger D; Trautwein C; Gaisa NT; Grabsch HI; Kather JN
    Lancet Digit Health; 2021 Oct; 3(10):e654-e664. PubMed ID: 34417147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based classification of kidney transplant pathology: a retrospective, multicentre, proof-of-concept study.
    Kers J; Bülow RD; Klinkhammer BM; Breimer GE; Fontana F; Abiola AA; Hofstraat R; Corthals GL; Peters-Sengers H; Djudjaj S; von Stillfried S; Hölscher DL; Pieters TT; van Zuilen AD; Bemelman FJ; Nurmohamed AS; Naesens M; Roelofs JJTH; Florquin S; Floege J; Nguyen TQ; Kather JN; Boor P
    Lancet Digit Health; 2022 Jan; 4(1):e18-e26. PubMed ID: 34794930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts.
    Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T
    Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate diagnosis and prognosis prediction of gastric cancer using deep learning on digital pathological images: A retrospective multicentre study.
    Huang B; Tian S; Zhan N; Ma J; Huang Z; Zhang C; Zhang H; Ming F; Liao F; Ji M; Zhang J; Liu Y; He P; Deng B; Hu J; Dong W
    EBioMedicine; 2021 Nov; 73():103631. PubMed ID: 34678610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study.
    Lin A; Manral N; McElhinney P; Killekar A; Matsumoto H; Kwiecinski J; Pieszko K; Razipour A; Grodecki K; Park C; Otaki Y; Doris M; Kwan AC; Han D; Kuronuma K; Flores Tomasino G; Tzolos E; Shanbhag A; Goeller M; Marwan M; Gransar H; Tamarappoo BK; Cadet S; Achenbach S; Nicholls SJ; Wong DT; Berman DS; Dweck M; Newby DE; Williams MC; Slomka PJ; Dey D
    Lancet Digit Health; 2022 Apr; 4(4):e256-e265. PubMed ID: 35337643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.