These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Buys SS; Sandbach JF; Gammon A; Patel G; Kidd J; Brown KL; Sharma L; Saam J; Lancaster J; Daly MB Cancer; 2017 May; 123(10):1721-1730. PubMed ID: 28085182 [TBL] [Abstract][Full Text] [Related]
9. Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. Gallagher S; Hughes E; Wagner S; Tshiaba P; Rosenthal E; Roa BB; Kurian AW; Domchek SM; Garber J; Lancaster J; Weitzel JN; Gutin A; Lanchbury JS; Robson M JAMA Netw Open; 2020 Jul; 3(7):e208501. PubMed ID: 32609350 [TBL] [Abstract][Full Text] [Related]
10. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. Couch FJ; Shimelis H; Hu C; Hart SN; Polley EC; Na J; Hallberg E; Moore R; Thomas A; Lilyquist J; Feng B; McFarland R; Pesaran T; Huether R; LaDuca H; Chao EC; Goldgar DE; Dolinsky JS JAMA Oncol; 2017 Sep; 3(9):1190-1196. PubMed ID: 28418444 [TBL] [Abstract][Full Text] [Related]
11. Cancer risk management among female BRCA1/2, PALB2, CHEK2, and ATM carriers. Cragun D; Weidner A; Tezak A; Clouse K; Pal T Breast Cancer Res Treat; 2020 Jul; 182(2):421-428. PubMed ID: 32445176 [TBL] [Abstract][Full Text] [Related]
12. Addition of triple negativity of breast cancer as an indicator for germline mutations in predisposing genes increases sensitivity of clinical selection criteria. Hoyer J; Vasileiou G; Uebe S; Wunderle M; Kraus C; Fasching PA; Thiel CT; Hartmann A; Beckmann MW; Lux MP; Reis A BMC Cancer; 2018 Sep; 18(1):926. PubMed ID: 30257646 [TBL] [Abstract][Full Text] [Related]
13. Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population. Senda N; Kawaguchi-Sakita N; Kawashima M; Inagaki-Kawata Y; Yoshida K; Takada M; Kataoka M; Torii M; Nishimura T; Kawaguchi K; Suzuki E; Kataoka Y; Matsumoto Y; Yoshibayashi H; Yamagami K; Tsuyuki S; Takahara S; Yamauchi A; Shinkura N; Kato H; Moriguchi Y; Okamura R; Kan N; Suwa H; Sakata S; Mashima S; Yotsumoto F; Tachibana T; Tanaka M; Togashi K; Haga H; Yamada T; Kosugi S; Inamoto T; Sugimoto M; Ogawa S; Toi M Cancer Sci; 2021 Aug; 112(8):3338-3348. PubMed ID: 34036661 [TBL] [Abstract][Full Text] [Related]
14. Frequency of mutations in BRCA genes and other candidate genes in high-risk probands or probands with breast or ovarian cancer in the Czech Republic. Riedlova P; Janoutova J; Hermanova B Mol Biol Rep; 2020 Apr; 47(4):2763-2769. PubMed ID: 32180084 [TBL] [Abstract][Full Text] [Related]
15. Cost-effectiveness of Population-Based BRCA1, BRCA2, RAD51C, RAD51D, BRIP1, PALB2 Mutation Testing in Unselected General Population Women. Manchanda R; Patel S; Gordeev VS; Antoniou AC; Smith S; Lee A; Hopper JL; MacInnis RJ; Turnbull C; Ramus SJ; Gayther SA; Pharoah PDP; Menon U; Jacobs I; Legood R J Natl Cancer Inst; 2018 Jul; 110(7):714-725. PubMed ID: 29361001 [TBL] [Abstract][Full Text] [Related]
16. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Graffeo R; Rana HQ; Conforti F; Bonanni B; Cardoso MJ; Paluch-Shimon S; Pagani O; Goldhirsch A; Partridge AH; Lambertini M; Garber JE Breast; 2022 Oct; 65():32-40. PubMed ID: 35772246 [TBL] [Abstract][Full Text] [Related]
17. Frequency of pathogenic germline variants in BRCA1, BRCA2, PALB2, CHEK2 and TP53 in ductal carcinoma in situ diagnosed in women under the age of 50 years. Petridis C; Arora I; Shah V; Megalios A; Moss C; Mera A; Clifford A; Gillett C; Pinder SE; Tomlinson I; Roylance R; Simpson MA; Sawyer EJ Breast Cancer Res; 2019 May; 21(1):58. PubMed ID: 31060593 [TBL] [Abstract][Full Text] [Related]
18. Risk of Late-Onset Breast Cancer in Genetically Predisposed Women. Boddicker NJ; Hu C; Weitzel JN; Kraft P; Nathanson KL; Goldgar DE; Na J; Huang H; Gnanaolivu RD; Larson N; Yussuf A; Yao S; Vachon CM; Trentham-Dietz A; Teras L; Taylor JA; Scott CE; Sandler DP; Pesaran T; Patel AV; Palmer JR; Ong IM; Olson JE; O'Brien K; Neuhausen S; Martinez E; Ma H; Lindstrom S; Le Marchand L; Kooperberg C; Karam R; Hunter DJ; Hodge JM; Haiman C; Gaudet MM; Gao C; LaDuca H; Lacey JV; Dolinsky JS; Chao E; Carter BD; Burnside ES; Bertrand KA; Bernstein L; Auer PW; Ambrosone C; Yadav S; Hart SN; Polley EC; Domchek SM; Couch FJ J Clin Oncol; 2021 Nov; 39(31):3430-3440. PubMed ID: 34292776 [TBL] [Abstract][Full Text] [Related]
19. Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Lee AJ; Cunningham AP; Tischkowitz M; Simard J; Pharoah PD; Easton DF; Antoniou AC Genet Med; 2016 Dec; 18(12):1190-1198. PubMed ID: 27464310 [TBL] [Abstract][Full Text] [Related]
20. Radiation Treatment, ATM, BRCA1/2, and CHEK2*1100delC Pathogenic Variants and Risk of Contralateral Breast Cancer. Reiner AS; Robson ME; Mellemkjær L; Tischkowitz M; John EM; Lynch CF; Brooks JD; Boice JD; Knight JA; Teraoka SN; Liang X; Woods M; Shen R; Shore RE; Stram DO; Thomas DC; Malone KE; Bernstein L; Riaz N; Woodward W; Powell S; Goldgar D; Concannon P; ; Bernstein JL J Natl Cancer Inst; 2020 Dec; 112(12):1275-1279. PubMed ID: 32119081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]