These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38124405)

  • 1. Electrohydrogenation of Nitriles with Amines by Cobalt Catalysis.
    Wang T; He F; Jiang W; Liu J
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202316140. PubMed ID: 38124405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis.
    Chandrashekhar VG; Baumann W; Beller M; Jagadeesh RV
    Science; 2022 Jun; 376(6600):1433-1441. PubMed ID: 35737797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobaltocene-Mediated Catalytic Hydride Transfer: Strategies for Electrocatalytic Hydrogenation.
    Marron DP; Galvin CM; Dressel JM; Waymouth RM
    J Am Chem Soc; 2024 Jun; 146(25):17075-17083. PubMed ID: 38864712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst.
    Adam R; Bheeter CB; Cabrero-Antonino JR; Junge K; Jackstell R; Beller M
    ChemSusChem; 2017 Mar; 10(5):842-846. PubMed ID: 28066996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines.
    Murugesan K; Senthamarai T; Chandrashekhar VG; Natte K; Kamer PCJ; Beller M; Jagadeesh RV
    Chem Soc Rev; 2020 Sep; 49(17):6273-6328. PubMed ID: 32729851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive C-C Coupling from α,β-Unsaturated Nitriles by Intercepting Keteniminates.
    Hale LVA; Sikes NM; Szymczak NK
    Angew Chem Int Ed Engl; 2019 Jun; 58(25):8531-8535. PubMed ID: 31016843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen-Doped Carbon-Supported Nickel Nanoparticles: A Robust Catalyst to Bridge the Hydrogenation of Nitriles and the Reductive Amination of Carbonyl Compounds for the Synthesis of Primary Amines.
    Zhang Y; Yang H; Chi Q; Zhang Z
    ChemSusChem; 2019 Mar; 12(6):1246-1255. PubMed ID: 30600939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mild and Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles.
    Shao Z; Fu S; Wei M; Zhou S; Liu Q
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14653-14657. PubMed ID: 27782352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Catalytic Systems for the Reduction of Aromatic and Aliphatic Nitrile Compounds to Amines.
    Ansari S; Shariati S
    Comb Chem High Throughput Screen; 2024 Apr; ():. PubMed ID: 38584566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive amination using cobalt-based nanoparticles for synthesis of amines.
    Murugesan K; Chandrashekhar VG; Senthamarai T; Jagadeesh RV; Beller M
    Nat Protoc; 2020 Apr; 15(4):1313-1337. PubMed ID: 32203487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General and selective synthesis of primary amines using Ni-based homogeneous catalysts.
    Murugesan K; Wei Z; Chandrashekhar VG; Jiao H; Beller M; Jagadeesh RV
    Chem Sci; 2020 Mar; 11(17):4332-4339. PubMed ID: 34122891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cobalt-Catalyzed and Lewis Acid-Assisted Nitrile Hydrogenation to Primary Amines: A Combined Effort.
    Tokmic K; Jackson BJ; Salazar A; Woods TJ; Fout AR
    J Am Chem Soc; 2017 Sep; 139(38):13554-13561. PubMed ID: 28906106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions.
    Yamada T; Park K; Furugen C; Jiang J; Shimizu E; Ito N; Sajiki H
    ChemSusChem; 2022 Jan; 15(2):e202102138. PubMed ID: 34779573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-pot Reductive Amination of carbonyl Compounds with Nitro Compounds by Transfer Hydrogenation over Co-N
    Zhou P; Zhang Z
    ChemSusChem; 2017 May; 10(9):1892-1897. PubMed ID: 28345301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cobalt-Catalyzed Enantioselective Hydroamination of Arylalkenes with Secondary Amines.
    Miao H; Guan M; Xiong T; Zhang G; Zhang Q
    Angew Chem Int Ed Engl; 2023 Jan; 62(2):e202213913. PubMed ID: 36342476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective N-alkylation of amines using nitriles under hydrogenation conditions: facile synthesis of secondary and tertiary amines.
    Ikawa T; Fujita Y; Mizusaki T; Betsuin S; Takamatsu H; Maegawa T; Monguchi Y; Sajiki H
    Org Biomol Chem; 2012 Jan; 10(2):293-304. PubMed ID: 22068239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-Induced Structural Reorganization Dictates Kinetics of Cobalt(III) Hydride Formation via Proton-Coupled Electron Transfer.
    Kurtz DA; Dhar D; Elgrishi N; Kandemir B; McWilliams SF; Howland WC; Chen CH; Dempsey JL
    J Am Chem Soc; 2021 Mar; 143(9):3393-3406. PubMed ID: 33621088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral phosphoric acid catalyzed transfer hydrogenation: facile synthetic access to highly optically active trifluoromethylated amines.
    Henseler A; Kato M; Mori K; Akiyama T
    Angew Chem Int Ed Engl; 2011 Aug; 50(35):8180-3. PubMed ID: 21748836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Aldehydes and Ketones.
    Schönauer T; Thomä SLJ; Kaiser L; Zobel M; Kempe R
    Chemistry; 2021 Jan; 27(5):1609-1614. PubMed ID: 33236790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cobalt-based nanocatalysts for green oxidation and hydrogenation processes.
    Jagadeesh RV; Stemmler T; Surkus AE; Bauer M; Pohl MM; Radnik J; Junge K; Junge H; Brückner A; Beller M
    Nat Protoc; 2015 Jun; 10(6):916-26. PubMed ID: 25996791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.