BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38124565)

  • 1. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path.
    Chen L; Zhao X
    Math Biosci Eng; 2023 Nov; 20(12):20553-20575. PubMed ID: 38124565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CircWalk: a novel approach to predict CircRNA-disease association based on heterogeneous network representation learning.
    Kouhsar M; Kashaninia E; Mardani B; Rabiee HR
    BMC Bioinformatics; 2022 Aug; 23(1):331. PubMed ID: 35953785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Serum Exosome-Derived circRNA-miRNA-TF-mRNA Regulatory Network in Postmenopausal Osteoporosis Using Bioinformatics Analysis and Validation in Peripheral Blood-Derived Mononuclear Cells.
    Dong Q; Han Z; Tian L
    Front Endocrinol (Lausanne); 2022; 13():899503. PubMed ID: 35757392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of atrial fibrillation-related circular RNAs and constructing the integrative regulatory network of circular RNAs, microRNAs and mRNAs by bioinformatics analysis.
    Zhai Z; Qin T; Liu F; Han L; Zhou H; Li Q; Xia Z; Li J
    Cell Mol Biol (Noisy-le-grand); 2020 Oct; 66(7):161-168. PubMed ID: 33287936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children.
    Wu J; Li J; Liu H; Yin J; Zhang M; Yu Z; Miao H
    J Clin Lab Anal; 2019 Nov; 33(9):e22998. PubMed ID: 31429492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model.
    Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J
    BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of potentially functional circRNAs and prediction of circRNA-miRNA-mRNA regulatory network in periodontitis: Bridging the gap between bioinformatics and clinical needs.
    Yu W; Gu Q; Wu D; Zhang W; Li G; Lin L; Lowe JM; Hu S; Li TW; Zhou Z; Miao MZ; Gong Y; Zhao Y; Lu E
    J Periodontal Res; 2022 Jun; 57(3):594-614. PubMed ID: 35388494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a circRNA-miRNA-mRNA network based on differentially co-expressed circular RNA in gastric cancer tissue and plasma by bioinformatics analysis.
    Gong Y; Jiao Y; Qi X; Fu J; Qian J; Zhu J; Yang H; Tang L
    World J Surg Oncol; 2022 Feb; 20(1):34. PubMed ID: 35164778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network.
    Bian C; Lei XJ; Wu FX
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring disease-associated circRNAs by multi-source aggregation based on heterogeneous graph neural network.
    Lu C; Zhang L; Zeng M; Lan W; Duan G; Wang J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network.
    Ma Z; Kuang Z; Deng L
    BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of the circRNA-miRNA-mRNA Regulatory Network of an Abdominal Aortic Aneurysm to Explore Its Potential Pathogenesis.
    Zhang H; Bian C; Tu S; Yin F; Guo P; Zhang J; Wu Y; Yin Y; Guo J; Han Y
    Dis Markers; 2021; 2021():9916881. PubMed ID: 34777635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of the exosomal circRNA-miRNA-mRNA network in breast cancer.
    Mao S; Cheng Y; Huang Y; Xiong H; Gong C
    J Gene Med; 2023 Jul; 25(7):e3500. PubMed ID: 36942488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GraphCDA: a hybrid graph representation learning framework based on GCN and GAT for predicting disease-associated circRNAs.
    Dai Q; Liu Z; Wang Z; Duan X; Guo M
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm.
    Wang L; You ZH; Li YM; Zheng K; Huang YA
    PLoS Comput Biol; 2020 May; 16(5):e1007568. PubMed ID: 32433655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circRNA-miRNA-mRNA regulatory network in plasma and peripheral blood mononuclear cells and the potential associations with the pathogenesis of systemic lupus erythematosus.
    Zheng F; Tan L; Zhang F; Li S; Lai Z; Xu H; Xiong Z; Dai Y
    Clin Rheumatol; 2023 Jul; 42(7):1885-1896. PubMed ID: 36862342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive identification of RNA transcripts and construction of RNA network in chronic obstructive pulmonary disease.
    Liu P; Wang Y; Zhang N; Zhao X; Li R; Wang Y; Chen C; Wang D; Zhang X; Chen L; Zhao D
    Respir Res; 2022 Jun; 23(1):154. PubMed ID: 35690768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a circRNA-miRNA-mRNA network to explore the effects of circRNAs on pathogenesis and treatment of spinal cord injury.
    Peng P; Zhang B; Huang J; Xing C; Liu W; Sun C; Guo W; Yao S; Ruan W; Ning G; Kong X; Feng S
    Life Sci; 2020 Sep; 257():118039. PubMed ID: 32621925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HGECDA: A Heterogeneous Graph Embedding Model for CircRNA-Disease Association Prediction.
    Fu Y; Yang R; Zhang L; Fu X
    IEEE J Biomed Health Inform; 2023 Oct; 27(10):5177-5186. PubMed ID: 37494154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.