These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38124569)

  • 41. SXGBsite: Prediction of Protein-Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting.
    Zhao Z; Xu Y; Zhao Y
    Genes (Basel); 2019 Nov; 10(12):. PubMed ID: 31771119
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ASLncR: a novel computational tool for prediction of abiotic stress-responsive long non-coding RNAs in plants.
    Pradhan UK; Meher PK; Naha S; Rao AR; Gupta A
    Funct Integr Genomics; 2023 Mar; 23(2):113. PubMed ID: 37000299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Feature extraction by statistical contact potentials and wavelet transform for predicting subcellular localizations in gram negative bacterial proteins.
    Arango-Argoty GA; Jaramillo-Garzón JA; Castellanos-Domínguez G
    J Theor Biol; 2015 Jan; 364():121-30. PubMed ID: 25219623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MSLP: mRNA subcellular localization predictor based on machine learning techniques.
    Musleh S; Islam MT; Qureshi R; Alajez NM; Alam T
    BMC Bioinformatics; 2023 Mar; 24(1):109. PubMed ID: 36949389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Hybrid Prediction Method for Plant lncRNA-Protein Interaction.
    Wekesa JS; Luan Y; Chen M; Meng J
    Cells; 2019 May; 8(6):. PubMed ID: 31151273
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PScL-HDeep: image-based prediction of protein subcellular location in human tissue using ensemble learning of handcrafted and deep learned features with two-layer feature selection.
    Ullah M; Han K; Hadi F; Xu J; Song J; Yu DJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34337652
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recent advances in machine learning methods for predicting LncRNA and disease associations.
    Tan J; Li X; Zhang L; Du Z
    Front Cell Infect Microbiol; 2022; 12():1071972. PubMed ID: 36530425
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational models for lncRNA function prediction and functional similarity calculation.
    Chen X; Sun YZ; Guan NN; Qu J; Huang ZA; Zhu ZX; Li JQ
    Brief Funct Genomics; 2019 Feb; 18(1):58-82. PubMed ID: 30247501
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Long Noncoding RNA and Protein Interactions: From Experimental Results to Computational Models Based on Network Methods.
    Zhang H; Liang Y; Han S; Peng C; Li Y
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30875752
    [TBL] [Abstract][Full Text] [Related]  

  • 50. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network.
    Wang L; Zhong C
    BMC Bioinformatics; 2022 Jan; 23(1):11. PubMed ID: 34983363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LNRLMI: Linear neighbour representation for predicting lncRNA-miRNA interactions.
    Wong L; Huang YA; You ZH; Chen ZH; Cao MY
    J Cell Mol Med; 2020 Jan; 24(1):79-87. PubMed ID: 31568653
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-trial extraction of event-related potentials (ERPs) and classification of visual stimuli by ensemble use of discrete wavelet transform with Huffman coding and machine learning techniques.
    Amin HU; Ullah R; Reza MF; Malik AS
    J Neuroeng Rehabil; 2023 Jun; 20(1):70. PubMed ID: 37269019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epileptic Focus Localization Using Discrete Wavelet Transform Based on Interictal Intracranial EEG.
    Chen D; Wan S; Bao FS
    IEEE Trans Neural Syst Rehabil Eng; 2017 May; 25(5):413-425. PubMed ID: 28113594
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BRWMC: Predicting lncRNA-disease associations based on bi-random walk and matrix completion on disease and lncRNA networks.
    Zhang GZ; Gao YL
    Comput Biol Chem; 2023 Apr; 103():107833. PubMed ID: 36812824
    [TBL] [Abstract][Full Text] [Related]  

  • 55. LDAH2V: Exploring Meta-Paths Across Multiple Networks for lncRNA-Disease Association Prediction.
    Deng L; Li W; Zhang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1572-1581. PubMed ID: 31725386
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A random forest based computational model for predicting novel lncRNA-disease associations.
    Yao D; Zhan X; Zhan X; Kwoh CK; Li P; Wang J
    BMC Bioinformatics; 2020 Mar; 21(1):126. PubMed ID: 32216744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein subcellular localization prediction using multiple kernel learning based support vector machine.
    Hasan MA; Ahmad S; Molla MK
    Mol Biosyst; 2017 Mar; 13(4):785-795. PubMed ID: 28247893
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Prediction of Apoptosis Protein's Subcellular Localization by Fusing Two Different Descriptors Based on Evolutionary Information.
    Liang Y; Zhang S
    Acta Biotheor; 2018 Mar; 66(1):61-78. PubMed ID: 29532347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Machine Learning Approach for the Detection of QRS Complexes in Electrocardiogram (ECG) Using Discrete Wavelet Transform (DWT) Algorithm.
    Rizwan A; Priyanga P; Abualsauod EH; Zafrullah SN; Serbaya SH; Halifa A
    Comput Intell Neurosci; 2022; 2022():9023478. PubMed ID: 35528332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.