These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38124687)

  • 1. Glucose 6-phosphate dehydrogenase variants increase NADPH pools for yeast isoprenoid production.
    Adusumilli SH; Alikkam Veetil A; Choudhury C; Chattopadhyaya B; Behera D; Bachhawat AK
    FEBS Open Bio; 2024 Mar; 14(3):410-425. PubMed ID: 38124687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redirection of the Glycolytic Flux Enhances Isoprenoid Production in Saccharomyces cerevisiae.
    Kwak S; Yun EJ; Lane S; Oh EJ; Kim KH; Jin YS
    Biotechnol J; 2020 Feb; 15(2):e1900173. PubMed ID: 31466140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of R. toruloides mevalonate pathway genes in increasing isoprenoid yields in S. cerevisiae: Evaluation of GGPPS and HMG-CoA reductase.
    Adusumilli SH; Dabburu GR; Kumar M; Arora P; Chattopadhyaya B; Behera D; Bachhawat AK
    Enzyme Microb Technol; 2024 Mar; 174():110374. PubMed ID: 38147781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae.
    Wadhwa M; Srinivasan S; Bachhawat AK; Venkatesh KV
    Microb Cell Fact; 2018 Sep; 17(1):152. PubMed ID: 30241525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase.
    Nogae I; Johnston M
    Gene; 1990 Dec; 96(2):161-9. PubMed ID: 2269430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress.
    Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G
    Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-6-Phosphate Dehydrogenase::6-Phosphogluconolactonase from the Parasite
    Morales-Luna L; González-Valdez A; Hernández-Ochoa B; Arreguin-Espinosa R; Ortega-Cuellar D; Castillo-Rodríguez RA; Martínez-Rosas V; Cárdenas-Rodríguez N; Enríquez-Flores S; Canseco-Ávila LM; Cruz VP; Gómez-Chávez F; Gómez-Manzo S
    Microorganisms; 2021 Aug; 9(8):. PubMed ID: 34442758
    [No Abstract]   [Full Text] [Related]  

  • 8. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fused Enzyme Glucose-6-Phosphate Dehydrogenase::6-Phosphogluconolactonase (G6PD::6PGL) as a Potential Drug Target in
    Morales-Luna L; Vázquez-Bautista M; Martínez-Rosas V; Rojas-Alarcón MA; Ortega-Cuellar D; González-Valdez A; Pérez de la Cruz V; Arreguin-Espinosa R; Rodríguez-Bustamante E; Rodríguez-Flores E; Hernández-Ochoa B; Gómez-Manzo S
    Microorganisms; 2024 Jan; 12(1):. PubMed ID: 38257939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply.
    Xue J; Balamurugan S; Li DW; Liu YH; Zeng H; Wang L; Yang WD; Liu JS; Li HY
    Metab Eng; 2017 May; 41():212-221. PubMed ID: 28465173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated activity of the oxidative and non-oxidative pentose phosphate pathway in (pre)neoplastic lesions in rat liver.
    Frederiks WM; Vizan P; Bosch KS; Vreeling-Sindelárová H; Boren J; Cascante M
    Int J Exp Pathol; 2008 Aug; 89(4):232-40. PubMed ID: 18422600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH production by the pentose phosphate pathway in the zona fasciculata of rat adrenal gland.
    Frederiks WM; Kümmerlin IP; Bosch KS; Vreeling-Sindelárová H; Jonker A; Van Noorden CJ
    J Histochem Cytochem; 2007 Sep; 55(9):975-80. PubMed ID: 17533217
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    White K; Kim MJ; Ding D; Han C; Park HJ; Meneses Z; Tanokura M; Linser P; Salvi R; Someya S
    J Neurosci; 2017 Jun; 37(23):5770-5781. PubMed ID: 28473643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucose-6-phosphate dehydrogenase exerts antistress effects independently of its enzymatic activity.
    Jin X; Li X; Li L; Zhong B; Hong Y; Niu J; Li B
    J Biol Chem; 2022 Dec; 298(12):102587. PubMed ID: 36243112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The regulation of the oxidative phase of the pentose phosphate pathway: new answers to old problems.
    Barcia-Vieitez R; Ramos-Martínez JI
    IUBMB Life; 2014 Nov; 66(11):775-9. PubMed ID: 25408203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An NADPH-independent mechanism enhances oxidative and nitrosative stress tolerance in yeast cells lacking glucose-6-phosphate dehydrogenase activity.
    Yoshikawa Y; Nasuno R; Takagi H
    Yeast; 2021 Jul; 38(7):414-423. PubMed ID: 33648021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of glutathione reductase uncovers the activation of NADPH-inhibited glucose-6-phosphate dehydrogenase.
    González-Blanco A; Allo A; Barcia R; Ramos-Martínez JI
    Biotechnol Appl Biochem; 2022 Aug; 69(4):1690-1695. PubMed ID: 34387395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical Characterization and Structural Modeling of Fused Glucose-6-Phosphate Dehydrogenase-Phosphogluconolactonase from
    Morales-Luna L; Serrano-Posada H; González-Valdez A; Ortega-Cuellar D; Vanoye-Carlo A; Hernández-Ochoa B; Sierra-Palacios E; Rufino-González Y; Castillo-Rodríguez RA; Pérez de la Cruz V; Moreno-Vargas L; Prada-Gracia D; Marcial-Quino J; Gómez-Manzo S
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dog liver glucose-6-phosphate dehydrogenase: purification and kinetic properties.
    Ozer N; Bilgi C; Hamdi Ogüs I
    Int J Biochem Cell Biol; 2002 Mar; 34(3):253-62. PubMed ID: 11849992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase.
    Ignea C; Trikka FA; Nikolaidis AK; Georgantea P; Ioannou E; Loupassaki S; Kefalas P; Kanellis AK; Roussis V; Makris AM; Kampranis SC
    Metab Eng; 2015 Jan; 27():65-75. PubMed ID: 25446975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.