These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 38124748)
1. Identification of key genes modules linking diabetic retinopathy and circadian rhythm. Ling F; Zhang C; Zhao X; Xin X; Zhao S Front Immunol; 2023; 14():1260350. PubMed ID: 38124748 [TBL] [Abstract][Full Text] [Related]
2. Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs. Bhatwadekar AD; Rameswara V Expert Opin Investig Drugs; 2020 Dec; 29(12):1431-1442. PubMed ID: 33107770 [TBL] [Abstract][Full Text] [Related]
3. Gene Biomarkers Related to Th17 Cells in Macular Edema of Diabetic Retinopathy: Cutting-Edge Comprehensive Bioinformatics Analysis and Huang J; Zhou Q Front Immunol; 2022; 13():858972. PubMed ID: 35651615 [TBL] [Abstract][Full Text] [Related]
4. Identification of differential immune cells and related diagnostic genes in patients with diabetic retinopathy. Yuan L; Zhang L; Liu X; Li S; Zou J Medicine (Baltimore); 2023 Sep; 102(39):e35331. PubMed ID: 37773794 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in the study of circadian rhythm disorders that induce diabetic retinopathy. Liu WJ; Chen JY; Niu SR; Zheng YS; Lin S; Hong Y Biomed Pharmacother; 2023 Oct; 166():115368. PubMed ID: 37647688 [TBL] [Abstract][Full Text] [Related]
6. CD8+T Cell-Related Gene Biomarkers in Macular Edema of Diabetic Retinopathy. Huang J; Zhou Q Front Endocrinol (Lausanne); 2022; 13():907396. PubMed ID: 35937822 [TBL] [Abstract][Full Text] [Related]
7. The STAT1-SLC31A1 axis: Potential regulation of cuproptosis in diabetic retinopathy. Hu Q; Zhang X; Huang J; Peng H; Sun Y; Sang W; Jiang B; Sun D Gene; 2024 Dec; 930():148861. PubMed ID: 39153705 [TBL] [Abstract][Full Text] [Related]
8. Identification and Validation of Autophagy-Related Genes in Diabetic Retinopathy. Wang N; Wei L; Liu D; Zhang Q; Xia X; Ding L; Xiong S Front Endocrinol (Lausanne); 2022; 13():867600. PubMed ID: 35574010 [TBL] [Abstract][Full Text] [Related]
9. Mining the proliferative diabetic retinopathy-associated genes and pathways by integrated bioinformatic analysis. Sun H; Cheng Y; Yan Z; Liu X; Zhang J Int Ophthalmol; 2020 Feb; 40(2):269-279. PubMed ID: 31953631 [TBL] [Abstract][Full Text] [Related]
10. CD44 Drives M1 Macrophage Polarization in Diabetic Retinopathy. Pan Z; Zhao Y; Zhou S; Wang J; Fan F Curr Eye Res; 2023 Aug; 48(8):770-780. PubMed ID: 37191152 [TBL] [Abstract][Full Text] [Related]
11. Identification of key ferroptosis genes in diabetic retinopathy based on bioinformatics analysis. Huang Y; Peng J; Liang Q PLoS One; 2023; 18(1):e0280548. PubMed ID: 36689408 [TBL] [Abstract][Full Text] [Related]
12. Identification of circadian rhythm-related gene classification patterns and immune infiltration analysis in heart failure based on machine learning. Wang X; Rao J; Zhang L; Liu X; Zhang Y Heliyon; 2024 Mar; 10(6):e27049. PubMed ID: 38509983 [TBL] [Abstract][Full Text] [Related]
13. Exploring the Immune Infiltration Landscape and M2 Macrophage-Related Biomarkers of Proliferative Diabetic Retinopathy. Meng Z; Chen Y; Wu W; Yan B; Meng Y; Liang Y; Yao X; Luo J Front Endocrinol (Lausanne); 2022; 13():841813. PubMed ID: 35692390 [TBL] [Abstract][Full Text] [Related]
14. Diabetes Reshapes the Circadian Transcriptome Profile in Murine Retina. Ye S; Wang Z; Ma JH; Ji S; Peng Y; Huang Y; Chen J; Tang S Invest Ophthalmol Vis Sci; 2023 Oct; 64(13):3. PubMed ID: 37788001 [TBL] [Abstract][Full Text] [Related]
15. Identification of miRNA-mRNA Regulatory Networks Associated with Diabetic Retinopathy using Bioinformatics Analysis. Xu W; Liang Y; Zhuang Y; Yuan Z Endocr Metab Immune Disord Drug Targets; 2023; 23(13):1628-1636. PubMed ID: 37114785 [TBL] [Abstract][Full Text] [Related]
16. Identification of the Relationship between Hub Genes and Immune Cell Infiltration in Vascular Endothelial Cells of Proliferative Diabetic Retinopathy Using Bioinformatics Methods. Huang J; Zhou Q Dis Markers; 2022; 2022():7231046. PubMed ID: 35154512 [TBL] [Abstract][Full Text] [Related]
17. Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy. Wang N; Ding L; Liu D; Zhang Q; Zheng G; Xia X; Xiong S Front Endocrinol (Lausanne); 2022; 13():918605. PubMed ID: 35957838 [TBL] [Abstract][Full Text] [Related]
18. Identification of biomarkers associated with immune scores in diabetic retinopathy. Zhang Y; Zhu W; Wang J; Zuo Y Front Endocrinol (Lausanne); 2023; 14():1228843. PubMed ID: 37867507 [TBL] [Abstract][Full Text] [Related]
19. Nuclear PKR in retinal neurons in the early stage of diabetic retinopathy in streptozotocin‑induced diabetic rats. Silva VAO; André ND; Sousa TAE; Alves VM; Kettelhut IDC; De Lucca FL Mol Med Rep; 2021 Aug; 24(2):. PubMed ID: 34184090 [TBL] [Abstract][Full Text] [Related]
20. Identification of potential ferroptosis-related biomarkers and a pharmacological compound in diabetic retinopathy based on machine learning and molecular docking. Liu J; Li X; Cheng Y; Liu K; Zou H; You Z Front Endocrinol (Lausanne); 2022; 13():988506. PubMed ID: 36506045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]