BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38125716)

  • 21. Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition.
    Al Mukaddim R; Weichmann AM; Mitchell CC; Varghese T
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33876591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SpectraCam
    Nkengne A; Robic J; Seroul P; Gueheunneux S; Jomier M; Vie K
    Skin Res Technol; 2018 Feb; 24(1):99-107. PubMed ID: 28771832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fiber-optic pulseoximeter for local oxygen saturation determination using a Monte Carlo multi-layer model for calibration.
    Hernández-Quintanar L; Fabila-Bustos DA; Hernández-Chávez M; Valor A; de la Rosa JM; Stolik S
    Comput Methods Programs Biomed; 2020 Apr; 187():105237. PubMed ID: 31790944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Estimation of melanin and hemoglobin using spectral reflectance images reconstructed from a digital RGB image by the Wiener estimation method.
    Nishidate I; Maeda T; Niizeki K; Aizu Y
    Sensors (Basel); 2013 Jun; 13(6):7902-15. PubMed ID: 23783740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation.
    Nishidate I; Wiswadarma A; Hase Y; Tanaka N; Maeda T; Niizeki K; Aizu Y
    Opt Lett; 2011 Aug; 36(16):3239-41. PubMed ID: 21847220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments.
    Zhong X; Wen X; Zhu D
    Opt Express; 2014 Jan; 22(2):1852-64. PubMed ID: 24515194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blind spectral unmixing for characterization of plaque composition based on multispectral photoacoustic imaging.
    Cano C; Matos C; Gholampour A; van Sambeek M; Lopata R; Wu M
    Sci Rep; 2023 Mar; 13(1):4119. PubMed ID: 36914717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo.
    Schwarz M; Buehler A; Aguirre J; Ntziachristos V
    J Biophotonics; 2016 Jan; 9(1-2):55-60. PubMed ID: 26530688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating relative chromophore concentrations from multiwavelength photoacoustic images using independent component analysis.
    An L; Cox BT
    J Biomed Opt; 2018 Jul; 23(7):1-10. PubMed ID: 29992796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images.
    Nishidate I; Aizu Y; Mishina H
    Opt Lett; 2005 Aug; 30(16):2128-30. PubMed ID: 16127932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The accuracy of pulse oximetry in measuring oxygen saturation by levels of skin pigmentation: a systematic review and meta-analysis.
    Shi C; Goodall M; Dumville J; Hill J; Norman G; Hamer O; Clegg A; Watkins CL; Georgiou G; Hodkinson A; Lightbody CE; Dark P; Cullum N
    BMC Med; 2022 Aug; 20(1):267. PubMed ID: 35971142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation.
    Nishidate I; Aizu Y; Mishina H
    J Biomed Opt; 2004; 9(4):700-10. PubMed ID: 15250756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable blood oxygenation in the vascular anatomy of a semi-anthropomorphic photoacoustic breast phantom.
    Dantuma M; Kruitwagen S; Ortega-Julia J; Pompe van Meerdervoort RP; Manohar S
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33728828
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Skin color correction for tissue spectroscopy: demonstration of a novel approach with tissue-mimicking phantoms.
    Soyemi OO; Landry MR; Yang Y; Idwasi PO; Soller BR
    Appl Spectrosc; 2005 Feb; 59(2):237-44. PubMed ID: 15720765
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Developing a novel device based on a new technology for non-invasive measurement of blood biomarkers irrespective of skin color.
    Gokhale SG; Daggubati VS; Alexandrakis G
    Ger Med Sci; 2023; 21():Doc09. PubMed ID: 37426887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy.
    Shu X; Liu W; Zhang HF
    J Biomed Opt; 2015 Oct; 20(10):106005. PubMed ID: 26469564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits.
    Hennen SN; Xing W; Shui YB; Zhou Y; Kalishman J; Andrews-Kaminsky LB; Kass MA; Beebe DC; Maslov KI; Wang LV
    Exp Eye Res; 2015 Sep; 138():153-8. PubMed ID: 26048477
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo photoacoustic imaging of chorioretinal oxygen gradients.
    Hariri A; Wang J; Kim Y; Jhunjhunwala A; Chao DL; Jokerst JV
    J Biomed Opt; 2018 Mar; 23(3):1-8. PubMed ID: 29524321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo spatial frequency domain spectroscopy of two layer media.
    Yudovsky D; Nguyen JQ; Durkin AJ
    J Biomed Opt; 2012 Oct; 17(10):107006. PubMed ID: 23085984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the Distribution of Melanin Concentration in Different Fitzpatrick Skin Types Using Hyperspectral Imaging Technique.
    Calin MA; Manea D; Savastru R; Parasca SV
    Photochem Photobiol; 2023; 99(3):1020-1027. PubMed ID: 36135823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.