BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38126104)

  • 1. Exploring the potential of the halotolerant bacterial strain Bacillus subtilis LN8B as an ecofriendly sulfide collector for seawater flotation.
    Arias D; Saldaña M; Botero YL; Dinamarca F; Paredes B; Salazar-Ardiles C; Andrade DC; Cisternas LA; Carrasco J; Santos C; Dorador C; Gómez-Silva B
    J Appl Microbiol; 2024 Jan; 135(1):. PubMed ID: 38126104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Use of Styrene-Based Nanoparticles to Mitigate the Effect of Montmorillonite in Copper Sulfide Recovery by Flotation.
    Estrada D; Murga R; Rubilar O; Amalraj J; Gutierrez L; Uribe L
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Polystyrene Nanoparticles as Collectors in the Flotation of Chalcopyrite.
    Murga R; Rodriguez C; Amalraj J; Vega-Garcia D; Gutierrez L; Uribe L
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective separation of pyrite and chalcopyrite by biomodulation.
    Chandraprabha MN; Natarajan KA; Modak JM
    Colloids Surf B Biointerfaces; 2004 Sep; 37(3-4):93-100. PubMed ID: 15342018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Interaction of Lignosulfonates for the Separation of Molybdenite and Chalcopyrite in Seawater Flotation Processes.
    Quiroz C; Murga R; Giraldo JD; Gutierrez L; Uribe L
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of molecular assembly between collectors and inhibitors on the flotation of pyrite and talc.
    Long T; Xiao W; Yang W
    R Soc Open Sci; 2019 Oct; 6(10):191133. PubMed ID: 31824721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dextrin on flotation separation and surface properties of chalcopyrite and arsenopyrite.
    Dong J; Liu Q; Subhonqulov SH
    Water Sci Technol; 2021 Jan; 83(1):152-161. PubMed ID: 33460414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thiol-Silylated Cellulose Nanocrystals as Selective Biodepressants in Froth Flotation.
    Ludovici F; Hartmann R; Rudolph M; Liimatainen H
    ACS Sustain Chem Eng; 2023 Nov; 11(45):16176-16184. PubMed ID: 38022739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microbial world in copper sulfide flotation plants (CSFP): Novel insights into bacterial communities and their application as potential pyrite bioreagents.
    Arias D; Salazar-Ardiles C; Andrade DC; Rivas M; Panico A; Race M; Cisternas LA; Dorador C
    Environ Res; 2023 Feb; 218():114904. PubMed ID: 36502904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.
    Mitchell TK; Nguyen AV; Evans GM
    Adv Colloid Interface Sci; 2005 Jun; 114-115():227-37. PubMed ID: 15894282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel property of DNA - as a bioflotation reagent in mineral processing.
    Vasanthakumar B; Ravishankar H; Subramanian S
    PLoS One; 2012; 7(7):e39316. PubMed ID: 22768298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some physicochemical aspects of water-soluble mineral flotation.
    Wu Z; Wang X; Liu H; Zhang H; Miller JD
    Adv Colloid Interface Sci; 2016 Sep; 235():190-200. PubMed ID: 27346329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Froth Flotation of Chalcopyrite/Pyrite Ore: A Critical Review.
    Castellón CI; Toro N; Gálvez E; Robles P; Leiva WH; Jeldres RI
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mineral flotation process using Thiobacillus ferrooxidans.
    Nagaoka T; Ohmura N; Saiki H
    Appl Environ Microbiol; 1999 Aug; 65(8):3588-93. PubMed ID: 10427053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.
    Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2009 Jan; 145(1-2):97-110. PubMed ID: 18851843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Susceptibility of Bacillus subtilis to Zinc Oxide Nanoparticles Treatment.
    Djearamane S; Sundaraji A; Eng PT; Liang SXT; Wong LS; Senthilkumar B
    Clin Ter; 2023; 174(1):61-66. PubMed ID: 36655646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective separation of arsenopyrite from pyrite by biomodulation in the presence of Acidithiobacillus ferrooxidans.
    Chandraprabha MN; Natarajan KA; Somasundaran P
    J Colloid Interface Sci; 2004 Aug; 276(2):323-32. PubMed ID: 15271559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Changes of
    Krishna Kanamarlapudi SLR; Muddada S
    Pol J Microbiol; 2019 Dec; 68(4):549-558. PubMed ID: 31880898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Sodium Alginate on the Flotation Separation of Molybdenite From Chalcopyrite Using Kerosene as Collector.
    Zeng G; Ou L; Zhang W; Zhu Y
    Front Chem; 2020; 8():242. PubMed ID: 32411654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.
    Liu S; Zhong H; Liu G; Xu Z
    J Colloid Interface Sci; 2018 Feb; 512():701-712. PubMed ID: 29107921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.