These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38126106)
1. Effects and molecular mechanism of sugar transporter ESA_RS15745 on desiccation resistance, motility, and biofilm formation of Cronobacter sakazakii. Ping L; Zhengyang Z; Mohan S; Ruihong W; Zhengang L; Wen L; Xuemeng J; Yue C; Xinjun D; Shuo W J Food Sci; 2024 Jan; 89(1):581-595. PubMed ID: 38126106 [TBL] [Abstract][Full Text] [Related]
2. Effects and molecular mechanism of flagellar gene flgK on the motility, adhesion/invasion, and desiccation resistance of Cronobacter sakazakii. Li P; Zong W; Zhang Z; Lv W; Ji X; Zhu D; Du X; Wang S Food Res Int; 2023 Feb; 164():112418. PubMed ID: 36738023 [TBL] [Abstract][Full Text] [Related]
3. RNA Sequencing-Based Transcriptional Overview of Xerotolerance in Cronobacter sakazakii SP291. Srikumar S; Cao Y; Yan Q; Van Hoorde K; Nguyen S; Cooney S; Gopinath GR; Tall BD; Sivasankaran SK; Lehner A; Stephan R; Fanning S Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446557 [No Abstract] [Full Text] [Related]
4. Effect of glutathione-transport-related gene Wang X-y; Li P; Du X-j; Wang S Appl Environ Microbiol; 2024 Feb; 90(2):e0156223. PubMed ID: 38289135 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Cronobacter sakazakii biofilm formation after sdiA knockout in different osmotic pressure conditions. Cao Y; Li L; Zhang Y; Liu F; Xiao X; Li X; Yu Y Food Res Int; 2022 Jan; 151():110886. PubMed ID: 34980413 [TBL] [Abstract][Full Text] [Related]
6. Alterations in the Transcriptional Landscape Allow Differential Desiccation Tolerance in Clinical Cronobacter sakazakii. Cao Y; Dever K; Sivasankaran SK; Nguyen SV; Macori G; Naithani A; Gopinath GR; Tall B; Lehner A; Stephan R; Srikumar S; Fanning S Appl Environ Microbiol; 2021 Nov; 87(24):e0083021. PubMed ID: 34644165 [TBL] [Abstract][Full Text] [Related]
7. The role of DsbA and PepP genes in the environmental tolerance and virulence factors of Cronobacter sakazakii. Jin T; Pang L; Yue T; Niu L; Li T; Liang Y; Zhang Y; Yan C; Yang B; Zhang C; Xia X Food Res Int; 2024 Aug; 190():114555. PubMed ID: 38945560 [TBL] [Abstract][Full Text] [Related]
8. Effect of ferric ions on Cronobacter sakazakii growth, biofilm formation, and swarming motility. Wang Y; Ling N; Wang Y; Ou D; Liang Z; Li G; Zhao H; Ye Y Int J Food Microbiol; 2024 Jan; 408():110418. PubMed ID: 37857020 [TBL] [Abstract][Full Text] [Related]
9. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii. Bao X; Jia X; Chen L; Peters BM; Lin CW; Chen D; Li L; Li B; Li Y; Xu Z; Shirtliff ME Microb Pathog; 2017 May; 106():16-19. PubMed ID: 28012985 [TBL] [Abstract][Full Text] [Related]
10. Maltodextrin-binding protein as a key factor in Cronobacter sakazakii survival under desiccation stress. Xue J; Lv J; Liu L; Duan F; Shi A; Ji X; Ding L Food Res Int; 2024 Feb; 177():113871. PubMed ID: 38225116 [TBL] [Abstract][Full Text] [Related]
11. Effects of Fan Y; Li P; Zhu D; Zhao C; Jiao J; Ji X; Du X Foods; 2023 Jun; 12(13):. PubMed ID: 37444309 [No Abstract] [Full Text] [Related]
12. Biofilm formation and associated gene expression changes in Cronobacter from cereal related samples in China. Lou X; Wu Y; Huang Z; Zhang W; Xiao X; Wu J; Li J; Fang Z Food Microbiol; 2024 Apr; 118():104409. PubMed ID: 38049271 [TBL] [Abstract][Full Text] [Related]
13. Impact of pmrA on Cronobacter sakazakii planktonic and biofilm cells: A comprehensive transcriptomic study. Xu Z; Liu Z; Soteyome T; Hua J; Zhang L; Yuan L; Ye Y; Cai Z; Yang L; Chen L; Harro JM; Kjellerup BV; Liu J; Li Y Food Microbiol; 2021 Sep; 98():103785. PubMed ID: 33875213 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of Carotenogenic-Biosynthesizing Genes Altered Lipids Composition and Intensity in Yang X; Wu S; Luo S; Weng X; Wu Y; Yu X; Huang X; Wang X; Hu X Foodborne Pathog Dis; 2024 Mar; 21(3):174-182. PubMed ID: 38112720 [No Abstract] [Full Text] [Related]
15. The maltose transporter subunit IICB of the phosphotransferase system: An important factor for biofilm formation of Cronobacter. Kong X; Li C; Sun X; Niu B; Guo D; Jiang Y; Yang J; Chen Q Int J Food Microbiol; 2022 Jun; 370():109517. PubMed ID: 35216827 [TBL] [Abstract][Full Text] [Related]
16. Outer membrane defect and stronger biofilm formation caused by inactivation of a gene encoding for heptosyltransferase I in Cronobacter sakazakii ATCC BAA-894. Wang L; Hu X; Tao G; Wang X J Appl Microbiol; 2012 May; 112(5):985-97. PubMed ID: 22353600 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the Desiccation Tolerance of Du XJ; Wang XY; Dong X; Li P; Wang S Front Microbiol; 2018; 9():2867. PubMed ID: 30542333 [TBL] [Abstract][Full Text] [Related]
18. Co-culture of Cronobacter sakazakii and Staphylococcus aureus: Explore the influence of mixed biofilm formation and regulation of Cronobacter sakazakii biofilm formation genes. Song D; Jia A; Qi X; Dong K; Liu S; Man C; Yang X; Jiang Y Food Res Int; 2023 Nov; 173(Pt 2):113457. PubMed ID: 37803782 [TBL] [Abstract][Full Text] [Related]
19. Genes involved in Cronobacter sakazakii biofilm formation. Hartmann I; Carranza P; Lehner A; Stephan R; Eberl L; Riedel K Appl Environ Microbiol; 2010 Apr; 76(7):2251-61. PubMed ID: 20118366 [TBL] [Abstract][Full Text] [Related]
20. Role of sigma factor RpoS in Zhan J; Qiao J; Wang X Bioengineered; 2021 Dec; 12(1):2791-2809. PubMed ID: 34157953 [No Abstract] [Full Text] [Related] [Next] [New Search]