These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Feasibility of a Wireless Implantable Multi-electrode System for High-bandwidth Prosthetic Interfacing: Animal and Cadaver Study. Gstoettner C; Festin C; Prahm C; Bergmeister KD; Salminger S; Sturma A; Hofer C; Russold MF; Howard CL; McDonnall D; Farina D; Aszmann OC Clin Orthop Relat Res; 2022 Jun; 480(6):1191-1204. PubMed ID: 35202032 [TBL] [Abstract][Full Text] [Related]
3. Flexible and stretchable implantable devices for peripheral neuromuscular electrophysiology. Li H; Zhao H; Song K; Han F; Liu Z; Tian Q Nanoscale; 2024 Mar; 16(13):6402-6428. PubMed ID: 38488215 [TBL] [Abstract][Full Text] [Related]
4. Regenerative Peripheral Nerve Interfaces for Advanced Control of Upper Extremity Prosthetic Devices. Ganesh Kumar N; Kung TA; Cederna PS Hand Clin; 2021 Aug; 37(3):425-433. PubMed ID: 34253315 [TBL] [Abstract][Full Text] [Related]
5. Broadband Prosthetic Interfaces: Combining Nerve Transfers and Implantable Multichannel EMG Technology to Decode Spinal Motor Neuron Activity. Bergmeister KD; Vujaklija I; Muceli S; Sturma A; Hruby LA; Prahm C; Riedl O; Salminger S; Manzano-Szalai K; Aman M; Russold MF; Hofer C; Principe J; Farina D; Aszmann OC Front Neurosci; 2017; 11():421. PubMed ID: 28769755 [TBL] [Abstract][Full Text] [Related]
6. Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes. Zbinden J; Sassu P; Mastinu E; Earley EJ; Munoz-Novoa M; Brånemark R; Ortiz-Catalan M Sci Transl Med; 2023 Jul; 15(704):eabq3665. PubMed ID: 37437016 [TBL] [Abstract][Full Text] [Related]
7. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. Yildiz KA; Shin AY; Kaufman KR J Neuroeng Rehabil; 2020 Mar; 17(1):43. PubMed ID: 32151268 [TBL] [Abstract][Full Text] [Related]
8. Innovations in prosthetic interfaces for the upper extremity. Kung TA; Bueno RA; Alkhalefah GK; Langhals NB; Urbanchek MG; Cederna PS Plast Reconstr Surg; 2013 Dec; 132(6):1515-1523. PubMed ID: 24281580 [TBL] [Abstract][Full Text] [Related]
9. Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application. Bruschi A; Donati DM; Choong P; Lucarelli E; Wallace G Adv Healthc Mater; 2021 Jul; 10(13):e2100041. PubMed ID: 34085772 [TBL] [Abstract][Full Text] [Related]
10. The Need to Work Arm in Arm: Calling for Collaboration in Delivering Neuroprosthetic Limb Replacements. Karczewski AM; Dingle AM; Poore SO Front Neurorobot; 2021; 15():711028. PubMed ID: 34366820 [TBL] [Abstract][Full Text] [Related]
11. Rechargeable wireless EMG sensor for prosthetic control. Lichter PA; Lange EH; Riehle TH; Anderson SM; Hedin DS Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5074-6. PubMed ID: 21095801 [TBL] [Abstract][Full Text] [Related]
13. The current state of bionic limbs from the surgeon's viewpoint. Bumbaširević M; Lesic A; Palibrk T; Milovanovic D; Zoka M; Kravić-Stevović T; Raspopovic S EFORT Open Rev; 2020 Feb; 5(2):65-72. PubMed ID: 32175092 [TBL] [Abstract][Full Text] [Related]
14. Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Srinivasan SS; Gutierrez-Arango S; Teng AC; Israel E; Song H; Bailey ZK; Carty MJ; Freed LE; Herr HM Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33593940 [TBL] [Abstract][Full Text] [Related]
15. [Targeted muscle reinnervation: a surgical technique of human-machine interface for intelligent prosthesis]. Guo Y; Zhao W; Huang J; Shen M; Li S; Liu C; Su X; Li G; Bi S; Pei G Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2023 Aug; 37(8):1021-1025. PubMed ID: 37586804 [TBL] [Abstract][Full Text] [Related]
17. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Ortiz-Catalan M; Håkansson B; Brånemark R Sci Transl Med; 2014 Oct; 6(257):257re6. PubMed ID: 25298322 [TBL] [Abstract][Full Text] [Related]
18. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study. Dewald HA; Lukyanenko P; Lambrecht JM; Anderson JR; Tyler DJ; Kirsch RF; Williams MR J Neuroeng Rehabil; 2019 Nov; 16(1):147. PubMed ID: 31752886 [TBL] [Abstract][Full Text] [Related]
19. First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. Pasquina PF; Evangelista M; Carvalho AJ; Lockhart J; Griffin S; Nanos G; McKay P; Hansen M; Ipsen D; Vandersea J; Butkus J; Miller M; Murphy I; Hankin D J Neurosci Methods; 2015 Apr; 244():85-93. PubMed ID: 25102286 [TBL] [Abstract][Full Text] [Related]
20. Strategies for neural control of prosthetic limbs: from electrode interfacing to 3D printing. Ngan CGY; Kapsa RMI; Choong PFM Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31207952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]