These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38126125)

  • 1. Targeting bacterial transcription factors for infection control: opportunities and challenges.
    Al-Tohamy A; Grove A
    Transcription; 2023 Dec; ():1-28. PubMed ID: 38126125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity in winged helix-turn-helix and substrate DNA interactions: Insights from theory and experiments.
    Boral A; Mitra D
    J Cell Biochem; 2023 Mar; 124(3):337-358. PubMed ID: 36715571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid.
    Bai H; Sang G; You Y; Xue X; Zhou Y; Hou Z; Meng J; Luo X
    PLoS One; 2012; 7(1):e29886. PubMed ID: 22253815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RNA-bound proteome of MRSA reveals post-transcriptional roles for helix-turn-helix DNA-binding and Rossmann-fold proteins.
    Chu LC; Arede P; Li W; Urdaneta EC; Ivanova I; McKellar SW; Wills JC; Fröhlich T; von Kriegsheim A; Beckmann BM; Granneman S
    Nat Commun; 2022 May; 13(1):2883. PubMed ID: 35610211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution structure of the IRF-2 DNA-binding domain: a novel subgroup of the winged helix-turn-helix family.
    Furui J; Uegaki K; Yamazaki T; Shirakawa M; Swindells MB; Harada H; Taniguchi T; Kyogoku Y
    Structure; 1998 Apr; 6(4):491-500. PubMed ID: 9562558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer.
    Zaim J; Kierzek AM
    Nucleic Acids Res; 2003 Mar; 31(5):1444-54. PubMed ID: 12595552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance.
    Colclough AL; Scadden J; Blair JMA
    BMC Genomics; 2019 Oct; 20(1):731. PubMed ID: 31606035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The σ enigma: bacterial σ factors, archaeal TFB and eukaryotic TFIIB are homologs.
    Burton SP; Burton ZF
    Transcription; 2014; 5(4):e967599. PubMed ID: 25483602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-delivery of free vancomycin and transcription factor decoy-nanostructured lipid carriers can enhance inhibition of methicillin resistant Staphylococcus aureus (MRSA).
    Hibbitts A; Lucía A; Serrano-Sevilla I; De Matteis L; McArthur M; de la Fuente JM; Aínsa JA; Navarro F
    PLoS One; 2019; 14(9):e0220684. PubMed ID: 31479462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prokaryotic sigma factors and their transcriptional counterparts in Archaea and Eukarya.
    Abril AG; Rama JLR; Sánchez-Pérez A; Villa TG
    Appl Microbiol Biotechnol; 2020 May; 104(10):4289-4302. PubMed ID: 32232532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MarR family transcription factors: dynamic variations on a common scaffold.
    Deochand DK; Grove A
    Crit Rev Biochem Mol Biol; 2017 Dec; 52(6):595-613. PubMed ID: 28670937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current strategies and progress for targeting the "undruggable" transcription factors.
    Zhuang JJ; Liu Q; Wu DL; Tie L
    Acta Pharmacol Sin; 2022 Oct; 43(10):2474-2481. PubMed ID: 35132191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons.
    Kotoky R; Ogawa N; Pandey P
    Microbiol Res; 2022 Sep; 262():127087. PubMed ID: 35717889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular biology of the LysR family of transcriptional regulators.
    Schell MA
    Annu Rev Microbiol; 1993; 47():597-626. PubMed ID: 8257110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent patents on therapeutic applications of the transcription factor decoy approach.
    Gambari R
    Expert Opin Ther Pat; 2011 Nov; 21(11):1755-71. PubMed ID: 22017413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of upstream activation sequences and integration host factor in transcriptional activation by the constitutively active prokaryotic enhancer-binding protein PspF.
    Dworkin J; Jovanovic G; Model P
    J Mol Biol; 1997 Oct; 273(2):377-88. PubMed ID: 9344746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription factors.
    Joyce AP; Havranek JJ
    Quant Biol; 2018 Mar; 6(1):68-84. PubMed ID: 37990674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA-binding proteins and evolution of transcription regulation in the archaea.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1999 Dec; 27(23):4658-70. PubMed ID: 10556324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global analysis of transcriptional regulators in Staphylococcus aureus.
    Ibarra JA; Pérez-Rueda E; Carroll RK; Shaw LN
    BMC Genomics; 2013 Feb; 14():126. PubMed ID: 23442205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The integration host factor regulates multiple virulence pathways in bacterial pathogen Dickeya zeae MS2.
    Chen S; Hu M; Hu A; Xue Y; Wang S; Liu F; Li C; Zhou X; Zhou J
    Mol Plant Pathol; 2022 Oct; 23(10):1487-1507. PubMed ID: 35819797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.